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Preface

This document contains the proceedings of the Training Workshop on

Nondeterministic Approaches and their Potential for Future Aerospace Systems held at

NASA Langley Research Center, Hampton, Virginia, May 30-31, 2001. The workshop was

jointly sponsored by Old Dominion University and NASA. Workshop attendees came from

NASA, other government agencies, industry, and universities. The objectives of the

workshop were to review the diverse activities in nondeterministic approaches, uncertainty

management methodologies, reliability assessment and risk management techniques, and to

identify their potential for future aerospace systems.

Ahmed K. Noor

Old Dominion University

Center for Advanced Engineering Environments

Hampton, Virginia
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INTRODUCTION

Increasingly more complex systems are being built and conceived by high-tech

industries. Engineers are asked to design faster, and to insert new technologies into these

systems. Increasing reliance is being made on modeling, simulation and virtual prototyping

to find globally optimal designs that take uncertainties and risk into consideration.

Conventional computational and design methods are inadequate to handle these tasks.

Therefore, intense effort has been devoted in recent years to nontraditional methods for

solving complex problems with system uncertainties.

An attempt is made in this overview to give broad definitions to the terms and to set

the stage for the succeeding presentations. The presentation is divided into four parts (see

Figure 1). In the first part, examples of future aerospace systems are given, along with some

of their major characteristics and design drivers. The second part describes the synergistic

coupling of the key technologies that can significantly enhance the modeling and simulation

technologies. The third part describes the future research and learning environments required

for the realization of the full potential of nondeterministic approaches. The fourth part lists

the objectives of the workshop and some of the sources of information on nondeterministic

approaches.

• Characteristics of Future Aerospace Systems

• Modeling and Simulation Technologies

• Research and Learning Environments

• Workshop

Figure 1



EXAMPLES OF FUTURE AEROSPACE SYSTEMS AND SOME OF THEIR

CHARACTERISTICS

The realization of NASA's ambitious goals in aeronautics and space with the current

national budget constraints will require new kinds of aerospace systems and missions that use

novel technologies and manage risk in new ways. Future aerospace systems must be

autonomous, evolvable, resilient, and highly distributed. Two examples are given in Figure

2. The first is a biologically inspired aircraft with self-healing wings that flex and react like

living organisms. It is built of a multifunctional material with fully integrated sensing and

actuation, and unprecedented levels of aerodynamic efficiencies and aircraft control. The

second is an integrated human-robotic outpost, with biologically inspired robots. The robots

could enhance the astronaut's capabilities to do large-scale mapping, detailed exploration of

regions of interest, and automated sampling of rocks and soil. They could enhance the safety

of the astronauts by alerting them to mistakes before they are made, and letting them know

when they are showing signs of fatigue, even if they are not aware of it.

Figure 2
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DEFINITIONS OF UNCERTAINTY AND A BRIEF HISTORICAL ACCOUNT OF

UNCERTAINTY MODELING

Uncertainty is an acknowledged phenomenon in the natural and technological worlds.

Engineers are continually faced with uncertainties in their designs. However, there is no

unique definition of uncertainty. A useful functional definition of uncertainty is: the

information/knowledge gap between what is known and what needs to be known for optimal
decisions, with minimal risk.

Prior to the twentieth century, uncertainty and other types of imprecisions were

considered to be unscientific, and therefore, not addressed. It was not until the beginning of

the twentieth century that statistical mechanics emerged and was accepted as a legitimate

area of science. It was taken for granted that uncertainty is adequately captured by

probability theory. It took sixty years to recognize that the conceptual uncertainty is too deep

to be captured by probability theory alone and to initiate studies of non-probabilistic

manifestations of uncertainty, as well as their applications in engineering and science. In the

last two decades, significant advances have been made in uncertainty modeling, the level of

sophistication has increased, and a number of software systems have been developed.

Among the recent developments are the perception-based information processing and

methodology of computing with words (Figure 3).

BRIEF H:|STORtCAL ACCOUNT
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TYPES OF UNCERTAINTIES

A number of different uncertainty representations and classifications have been

proposed. Among these classifications are the three-type classification - statistical, model,

and fundamental uncertainties; the two type classification - uncertainty of information and

uncertainty of the reasoning process; and the six-type classification (see Figure 4):

• Probabilistic uncertainty, which arises due to chance or randomness,

• Fuzzy uncertainty due to linguistic imprecision (e.g., set boundaries are not

sharply defined),

• Model uncertainty which is attributed to lack of information about the model

characteristics,

• Uncertainty due to limited (fragmentary) information available about the system

(for example, in the early stage of the design process),

• Resolutional uncertainty which is attributed to limitation of resolution (e.g.,

sensor resolution), and

• Ambiguity (i.e., one to many relations).

Figure 4



MANAGING UNCERTAINTIES

While completely eliminating uncertainty in engineering design is not possible,

reducing and mitigating its effects have been the objectives of the emerging field of

uncertainty management. The field draws from several disciplines including statistics,

management science, organization theory, and inferential thinking (see Figure 5).

Figure 5



NONDETERMINISTIC ANALYSIS APPROACHES

Depending on the type of uncertainty and the amount of information available about

the system characteristics and the operational environments, three categories of

nondeterministic approaches can be identified for handling the uncertainties. The three

approaches are (see Figure 6): probabilistic analysis, fuzzy-set approach, and set theoretical,

convex (or anti-optimization) approach. In probabilistic analysis, the system characteristics

and/or the source variables are assumed to be random variables (or functions), and the joint

probability density functions of these variables are selected. The main objective of the

analysis is the determination of the reliability of the system.

If the uncertainty is because of a vaguely defined system and/or operational

characteristics, imprecision of data, and subjectivity of opinion or judgment, fuzzy-set

treatment is appropriate. Randomness describes the uncertainty in the occurrence of an event

(such as damage or failure).

When the information about the system and/or operational characteristics is

fragmentary (e.g., only a bound on a maximum possible response function is known), then

convex modeling is practical. Convex modeling produces the maximum or least-favorable

response and the minimum or most favorable response of the system under the constraints

within the set-theoretic description.

Figure 6



ENHANCING THE MODELING AND SIMULATION TECHNOLOGIES

The synergistic coupling of nondeterministic approaches with a number of key

technologies can significantly enhance the modeling and simulation capabilities and meet the

needs of future complex systems. The key technologies include: Virtual product

development for simulating the entire lifecycle of the engineering system, reliability and risk

management, intelligent software agents, knowledge and information, high performance

computing, high capacity communications, human computer interfaces, and human

performance.

Figure 7



VIRTUAL PRODUCT DEVELOPMENT

Current virtual product development (VPD) systems have embedded simulation

capabilities for the entire lifecycle of the product. As an example, the top-level system

process flow for a space transportation system is shown in Figure 8. In each phase

uncertainties are identified and appropriate measures are taken to mitigate their effects.

Information Technology will change the product development from a sequence of distinct

phases into a continuous process covering the entire lifecycle of the product with full

interplay of information from beginning to end and everywhere throughout.

Figure 8
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RELIABILITY ASSESSMENT

Reliability is defined as the probability that a component (or a system) will perform

its intended function without failure for a specified period of time under designated operating

conditions. Failure rate or hazard rate is an important function in reliability analysis since it

provides a measure of the changes in the probability of failure over the lifetime of a

component. In practice, it often exhibits a bathtub shape (see Figure 9).

Reliability assessment includes: selection of a reliability model, analysis of the

model, calculation of the reliability performance indices, and evaluation of results, which

includes establishment of confidence limits and decision on possible improvements.

Figure 9
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RISK MANAGEMENT PROCESS

Risk is defined as the uncertainty associated with a given design, coupled with its

impact on performance, cost and schedule. Risk management is defined as the systems

engineering and program management tools that can provide a means to identify and resolve

potential problems.

The risk management process includes the following task (Figure 10):

• Risk planning: development of a strategy for identifying risk drivers.

• Risk identification: identifying risk associated with each technical process.

• Risk analysis: isolating the cause of each identified risk category and

determining the effects.

The combination of risk identification and risk analysis is referred to as risk

assessment.

• Risk handling: selecting and implementing options to set risk at acceptable
levels.

• Risk monitoring: systematically tracking and evaluating the performance of

risk handling actions.

Figure 10
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ROBUSTNESS

Robustness is defined as the degree of tolerance to variations (in either the

components of a system or its environment). A robust ultra-fault-tolerant design of an

engineering system is depicted in Figure 11. The performance of the system is relatively

insensitive to variations in both the components and the environment. By contrast, a non-

robust design is sensitive to variations in either or both.

Robust Design

Vat. in

Environment

Performance Non- Robust Performance

Desi_

Van in in

Components Environment

Figure 11
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TERAMAC CONFIGURABLE CUSTOM COMPUTER

An example of a robust, ultra-fault-tolerant system is the Teramac Computer which is

a one Tera Hertz massively parallel experimental computer built at Hewlett-Packard

Laboratories to investigate a wide range of computational architectures (Figure 12). It

contains 22,000 (3%) hardware defects, any one of which could prove fatal to a more

conventional machine. It incorporates a high communication bandwidth that enables it to

easily route around defects. It operates 100 times faster than a high-end single processor

workstation (for some of its configurations).

Teramac Configurable Custom Computer

Massively parallel experimental
computer built at Hewlett-Packard Labs

Contains 220,000 hardware defects

route around defects

Operates
single-processor
its conflguratlons

f
100 times faster than a high-end

workstation (for some of

Figure 12
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KEY COMPONENTS OF ADVANCED SIMULATION AND MODELING

ENVIRONMENTS

The realization of the full potential of nondeterministic approaches in modeling and

simulation requires an environment that links diverse teams of scientists, engineers, and

technologists. The essential components of the environment can be grouped into three

categories (Figure 13): intelligent tools and facilities, nontraditional methods, and advanced
interfaces.

Figure 13
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INTELLIGENT TOOLS AND FACILITIES

These include high fidelity - rapid modeling, lifecycle simulation and visualization

tools, synthetic immersive environment; automatic and semiautomatic selection of software

and hardware platforms; computer simulation of physical experiments and remote control of

these experiments. In all of these tools, extensive use should be made of intelligent software

agents and information technology (Figure 14).

• _

ll

Figure 14
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ADVANCED HUMAN/COMPUTER INTERFACES

Although the WIMP (windows, icons, menus, pointing devices) paradigm has

provided a stable global interface, it will not scale to match the myriad from factors and uses

of platforms in the future collaborative distributed environment. Perceptual user interfaces

(PUI) are likely to meet those needs. PUI's integrate perceptive, multimodal and multimedia

interfaces to bring human capabilities to bear on creating more natural intuitive interfaces.

They enable multiple styles of interactions, such as speech only, speech and gesture, vision,

and synthetic sound, each of which may be appropriate in different applications (Figure 15).

These new technologies will enable broad uses of computers as assistants or agents that will

interact in more human-like ways.

• Integrates perceptive, multimodal and multimedia
interfaces to bring human capabilities to bear on
creating more natural and intuitive interfaces

• Enables multiple styles of interactions and broad
uses of computers as assistants

Figure 15
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NONTRADITIONAL METHODS

These include multi-scale methods, strategies for highly coupled multi-physical

problems, and nondeterministic approaches for handling uncertainty in geometry, material

properties, boundary conditions, loading and operational environments (Figure 16).

Figure 16
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PRINCIPLE OF COMPLEXITY

One of the important consequences of uncertainty is its effect on precision. Three

types of models can be identified depending on the complexity and the precision, namely:

mathematical models, model-free methods, and fuzzy systems (Figure 17). In a typical

complex system a combination of the three should be used. As the uncertainty and/or

complexity of an engineering system increases, the ability to predict its response diminishes,

until a threshold is reached beyond which precision and relevance become almost mutually

exclusive. Consider, for example, numerical simulations in which sophisticated

computational models are used for predicting the response, performance, and reliability of

the engineering system, but the system parameters are little more than guesses. Such

simulations can be characterized as Correct but Irrelevant Computations (CBIC); that is,

forcing precision where it is not possible.

Prin ple of Comp I
]Natheme | | Nodel Free Fuzzy Systems

Precision:

Figure 17
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BOUNDING UNCERTAINTIES IN SIMULATION MODELS

Current synthesis approaches of simulation models involve a sequence of four phases

(Figurel8).

First - selection of the models, which includes decisions about modeling approach,

level of abstraction, and computational requirements. The complexities arise due to:

• Multiconstituents, multiscale, and multiphysics material modeling,

• Integration of heterogeneous models,

Second - parameter identification. Data reduction techniques are used which

incorporate uncertainties,

Third - model updating, or reducing uncertainty by improving either the model

characteristics or the model itself, and

Fourth - Validation, in the sense of confirming that the model is an accurate

representation of the real system.

Figure 18
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QUALITY CONTROL AND UNCERTAINTY MANAGEMENT IN THE

MODELING AND SIMULATION OF COMPLEX SYSTEMS

The estimation of total uncertainty in the modeling and simulation of complex

systems involves: a) identification and characterization of the sources of uncertainty,

variability and error; b) uncertainty propagation and aggregation; and c) uncertainty

quantification (Figure 19).

Herein uncertainty is defined as a deficiency in any phase of the modeling process

due to lack of knowledge (model form or reducible uncertainty) increasing the knowledge

base can reduce the uncertainty. The term variability is used to describe inherent variation

associated with the system or its environment (irreducible or stochastic uncertainty)

variability is quantified by a probability or frequency distribution. An error is defined as a

recognizable deficiency that is not due to lack of knowledge. An error can be either

acknowledged (e.g., discretization or round-off error), or unacknowledged (e.g.,

programming error).

Figure 19
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VERIFICATION AND VALIDATION OF NUMERICAL SIMULATIONS

Quantifying the level of confidence, or reliability and accuracy of numerical

simulations has recently received increased levels of attention in research and engineering

applications. During the past few years, new technology development concepts and

terminology have arisen. Terminology such as virtual prototyping and virtual testing is now

being used to describe computer simulation for design, evaluation and testing of new

engineering systems.

The two major phases of modeling and simulation of an engineering system are

depicted in Figure 20. The first phase involves developing a conceptual and mathematical

model of the system. The second phase involves discretization of the mathematical model,

computer implementation, numerical solution and representation or visualization of the

solution. In each of these phases there are uncertainties, variabilities and errors.

Verification and validation are the primary methods for building and quantifying

confidence in numerical simulations. Verification is the process of determining that a model

implementation accurately represents the conceptual/mathematical model and the solution to

the model. Correct answer is provided by highly accurate solutions. Validation is the

process of determining the degree to which a model is an accurate representation of the real

system. Correct answer is provided by experimental data.

Figure 20
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DESIGN OF EXPERIMENTS

These are systematic techniques for investigating (all possible) variations in system

performance due to changes in system variables.

Two categories of system variables can be identified, namely, a) Inner-array

variables, which are controllable; and, b) outer-array variables (also called noise

factors), which are functions of environmental conditions, and are uncontrollable.

Three categories of techniques can be identified: Regression analysis, statistical

methods and Taguchi's method (Figure 21).

In Taguchi's method, the controllable variables are selected in such a way as to

dampen the effect of the noise variables on the system performance. The method was

originally developed as an industrial total quality control approach. Subsequently, it has

found several other applications, including design optimization through variability reduction.
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EDUCATION, TRAINING AND LEARNING

There has long been a philosophical gap between education and training. The goal of

education was to impart high-level cognitive skills that would underpin lifelong learning.

The goal of training was to bring performance up to a level that would let people successfully

achieve tasks. Recently, however, began to emphasize the skills involved in lifelong

learning, as evidence by continual-growth workshops and online training facilities on the

Internet. In a sense, both education and training objectives fit in the larger classification of

learning objectives (see figure 22).

Figure 22
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LEARNING OBJECTIVES, INSTRUCTIONAL MODELS AND TECHNOLOGIES

The desired outcome of learning can range from information transfer to skill and

knowledge acquisition to the more ambitious goal of development of critical thinking and

creativity skills. The instructional model and method used for accomplishing these goals

vary from instructor-centered, learner-center to learning-team centered. In the learner-

centered model, the learner is at the center of the learning process, and calls on many

information sources. Learning-team center models include virtual classrooms and web-based

distance learning models. The technologies employed in the three models are distribution,

interactive and collaborative technologies, respectively (See Figure 23).

Learning Objectives, instructional Model, and Technology

Learning Objectives

Collaboration

Team Techno|ogies

Interactive

Technologies

Instructor Distribution

Centered Technologies

Instructional Model Technology

Figure 23
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LEARNING NETWORKS

The convergence of computing, communication and information technologies is

providing opportunities for creating effective environments for life-long learning through

expanding the concept of a university which is, typically limited to a campus, to that of a

learning network (Figure 24). In such a network, the classrooms are augmented by e-

learning facilities (e.g., virtual classrooms); the libraries are expanded into intelligent

knowledge repositories (with digital libraries and intelligent search and information

visualization capabilities); the physical test and experimental facilities are augmented with

access to more elaborate facilities at government labs, along with computer simulation of

these facilities; and Imrnersive telepresence technology is used to provide interaction with

geographically dispersed instructors and learners at other locations.

In

Figure 24
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ACTIVITIES OF LEARNING NETWORKS

The learning networks can significantly enhance the effectiveness of engineering

education, by changing the way three of the major functions of a university are carried out,

namely, development of content for courses, packaging courses into curricula and programs,

and delivery of these programs to learners (Figure 25).

Each course is divided into self-contained learning modules, and a consortium is

established for generating the best content for each of the learning modules. Advanced

instructional technology; modeling, simulation and visualization facilities and authoring tools

are used in the development of modules.

The learning modules are then packaged into disciplinary and interdisciplinary

courses and training programs to satisfy the needs of diverse groups.

The packaged modules are presented to individuals as well as groups of learners.

Collaboration and interaction is made available at many levels, both synchronous and

asynchronous.

Activities of Learning Networks Activ_e_;-of Learning Networks

* Establish consortia

for developing the
best materials for

the learning
modules

Act_vities of L-e rning Networks

. Package learning
modules into
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Figure 25
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ADVANCED LEARNING ENVIRONMENTS

In order to meet the life long learning demands of the future and broaden the

awareness among the researchers and engineers of nondeterministic approaches, three

categories of learning environments are needed; namely, expert led group learning

environment; self paced individual learning environment; and collaborative learning

environment (Figure 26). The three environments, in combination, can reduce the time and

cost of learning, as well as sustain and increase worker competencies in high tech

organizations.

The human instructors in these environments will serve many roles, including

inspiring, motivating, observing, evaluating, and steering the learners, both individually and
in distributed teams.

Figure 26
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EXPERT LED LEARNING ENVIRONMENT

The human instructors in expert-led distributed learning in a virtual environment

serve as coaches, guides, facilitators, and course managers. Their presentations focus on a

broad overview of the topic and its diverse applications (Figure 27), and end with more

penetrating, what-if questions that can enhance the critical thinking and creativity of the

learners. Elaborate visualization and multimedia facilities are used in the presentations.

Routine instructional and training tasks are relegated to the self-paced individual learning
environment.

Figure 27
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SELF-PACED LEARNING ENVIRONMENT

The individual learning environment engages the learner and provides a high degree

of tailored interactivity. It can be used for self-paced instruction of routine material not

covered in the lecture. Using virtual instructors assigned by the human instructors can

enhance such instruction. It can be used to study the effect of various types of uncertainties

on the system performance using advanced visualization, multimedia and multisensory

immersive facilities. The individual learning environment can serve to carry out numerical

and virtual experiments - computer simulation of physical experiments (Figure 28).

Figure 28
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COLLABORATIVE / DISTRIBUTED LEARNING ENVIRONMENT

Collaborative learning environments teach teamwork and group problem solving.

Instructors and learners can be geographically dispersed. Eventually, they can be brought

together through immersive telepresence facilities to share their experiences in highly

heterogeneous environments involving different computing platforms, software and other

facilities, and they will be able to work together to design complex engineering systems

beyond what is traditionally done in academic settings. Because participants can be virtually

collocated without leaving their industry and government laboratories, collaborative learning

environments can enable the formation of learning networks linking universities, industry

and government labs. The ultimate goal of these learning facilities is to create an intellectual

environment where academic and experiential learning are effectively and efficiently co-

mingled. In such an environment, academic rigor is learned in concert with professional job

performance, and academic complexities are addressed within the industrial concern (Figure

29).

Figure 29
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VIRTUAL CLASSROOM

Online training and virtual classrooms are typically used to provide learning

environments with custom self-instruction, flexible tutorial support, and choice of both the

place and time of learning. Three categories of facilities are used in these environments;

namely: instruction, including multimedia lectures, links to other resources and tools for

searching, browsing, and using archived knowledge; communication, including email,

UseNet, chat centers, video and Internet conferencing; and course management and

performance evaluation (Figure 30).

Figure 30
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NONDETERMINISTIC APPROACHES RESEARCH AND LEARNING

NETWORKS

The realization of the full potential of nondeterministic approaches in the design and

development of future complex systems requires, among other things, the establishment of

research and learning networks. The networks connect diverse, geographically dispersed

teams from NASA, other government labs, university consortia, industry, technology

providers, and professional societies (Figure 31).

Figure 31
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EVOLUTION OF NEW TECHNOLOGY

The nondeterministic approaches and their associated technologies, as any other

technology, have gone through three phases. The first is that of na_'ve euphoria - unrealistic

expectations resulting from overreaction to immature technology. The second is cynicism, or

frustration associated with unmet expectations. The third is that of realistic expectations -

gradually realizing the true benefits from the technologies (Figure 32).

l
EvoluUon of New Technology
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Figure 32
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OBJECTIVES AND FORMAT OF WORKSHOP

The objectives of the workshop are to: a) provide a broad overview of

nondeterminisfic approaches, uncertainty management methodologies, reliability assessment

and risk management techniques, and b) identify the potential of these technologies to future

aerospace systems (Figure 33). The workshop, including sixteen presentations and three

exhibits, illuminate some of the key issues in nondeterministic approaches and provide fresh

ideas for future research and development (Figure 34).

Format of Workshop

• of diverse acUvities in
Nondeterministic Approaches

e potential for future

_rmat

e 16:presentations,7 sessions

• 3

Proceedings

It (NASA CP)

• Electronic

Figure 33
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INFORMATION ON NONDETERMINISTIC APPROACHES

Extensive literature no exists on nondeterministic approaches, uncertainty

management methodologies, reliability assessment and risk management techniques. A short

list of reports, survey papers, monographs and books is given subsequently.

.
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,

°

.
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INTRODUCTION AND OBJECTIVE

Future systems will require engineers to design them, test their performance, and

assess their robustness and vulnerability in a simulated environment. Simulation requires

validated building blocks for materials behavior, physical laws, environment-system

interaction, unit performance, and system performance. At every level and stage of the

simulation process, verification and validation are needed that should include ignorance

analysis, and uncertainty analysis and modeling. Example systems include our nuclear

weapon stockpile, space stations, satellites, space missions, etc.

Introduction
" I ._dl_-"_'_wSmimmllllmmm/lm_iiiiiiiii)ii)iiiiiiii!Lsi_ili_iiiiiiii!iiiiiiiiii_

> Engineering Systems
- Complex engineering systems and reliance on

simulation, such as:

• Advanced systems (e.g., Mobile offshore base);

• Power plants; and aerospace & space mission
systems

require modeling and assessment of knowledge
and ignorance.

> Objective
- Adapt and develop quantitative models and

measures suitable for prediction and decision-
based design of complex engineering systems
under conditions of uncertainty or ignorance.

Figure 1
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SYSTEM BREAKDOWN OF SHIPS

An example breakdown is provided for the functions of a ship. A work breakdown

structure is also provided for illustration purposes.

System Breakdown

of Ships
Survivability

Requirements

Hazard Abatement

Systems

_:7 l_i

Ship Services

Systems

Figure 2
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SYSTEM BREAKDOWN OF DAMS

An example breakdown is provided for the functions of a dam. A work breakdown

structure is also provided for illustration purposes.

System Breakdown
of Dams

Upstream and
Water Inflow

[ Dam 1
I

V *

Serviceability Safety
Requirements Requirements

..._Wmj£.__ _lih_ i :'............ dv _ '- FlOod '

Su'en_da o

W_r:eleas_ I , I t C°nntr°l [

__ oo I I st_c_aUlt Stability II
I Dam System / water Geotechnical I

/ a_ [ gnty i i Flood II _ . I

• [Plain I Downstream
..... Downstream and Dams

I uam _ac D/ Water Outflow

Figure 3
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LIFECYCLE OF NASA ENGINEERING SYSTEMS

The phases of the lifecycle of NASA systems are provided in this viewgraph covering

pre-phase and phase A. The details of these phases are listed.

Lifecycle of NASA Engineering

Systems

Pre-phase A. Advanced Studies

identify missions consistent with the NASA charter

identify and involve users

perform preliminary evaluations of possible missions

Phase A. Conceptual Design Studies

preparation of mission needs statements

development of preliminary system requirements

identification of alternative operations and logistics concepts

identification of project constraints and system boundaries

consideration of alternative design concepts

demonstrating that credible, feasible designs exist

U

Figure 4
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LIFECYCLE OF NASA ENGINEERING SYSTEMS

The phases of the lifecycle of NASA systems are provided in this viewgraph covering

phases B, C, D, E, and F. The details of these phases are listed.

Lifecycle of NASA Engineering

Systems

Phase B. Concept Definition (selected items)
reaffirmation of the mission needs statement

preparation of a program initiation agreement

preparation of a system engineering management plan

preparation of a risk management plan

Phase C. Design and Development

Phase D. Fabrication, Integration, Test and
Certification

Phase E. Pre-Operations

Phase F. Operations and Disposal

Figure 5
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MODELING & SIMULATION OF ENGINEERING SYSTEMS

Modeling and simulation of engineering systems consists of several steps. These

steps are key to the processes of model qualification, verification and validation. The

processes of qualification, verification and validation are shown in the figure. The

verification process consists of three stages: conceptual model verification, design

verification, and code verification. The verification can be done by comparison and test of

agreement between the computational model and solution, and results from benchmark

(analytical or very accurate numerical solutions) of simplified model problems. The

validation consists of two stages: conceptual model validation, and results validation that can

be done by expert opinion solicitation. The objective herein is to adapt and develop

quantitative models and measures suitable for prediction and decision-based design of

complex engineering systems under conditions of uncertainty or ignorance.

Modeling & Simulation of

Engineering Systems

> Conceptual modeling of a real system

> Mathematical modeling of the conceptual designs

> Discretization and algorithm selection

> Computer programming ou_,_;',,o.
>Numerical solution _ _..,_, _oo,..o_o
> Representation of the Mo.e, [ Co4ute, ....._-O._F.T..LMOO_.

-- , , Validation / Simulation /\ ............

numerical soluhon \ _-- .. Prog,am_,ng_,

"7
_ Model

Problem & System _ vo_.ioatlon
Definition _!!,_.............__i_

Figure 6
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KNOWLEDGE NEEDS FOR SOLVING PROBLEMS AT THE SYSTEM LEVEL

Problem definition and abstraction are key elements to problem solving and

knowledge construction.

Knowledge Needs for Solving

Problems at the System Level
ili!iiiii_!ili_ii!ili_:!iiiijiiiiiii _/t/_" !!iiiiiiiiiiiii!iiii_iiiliiiiiiiiiiiiiiiiiiiiiii

> "The mere formulation of a problem
is often far more essential than its
solution..." Albert Einstein

> "What we observe is not nature

itself, but nature exposed to our
method of questioning."
Werner Karl Heisenberg

Figure 7
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KNOWLEDGE CATEGORIES

A breakdown of knowledge categories, objects of knowledge and knowledge sources

are provided herein. The knowledge base about a system is a mixture of truth and fallacy.

Knowledge
• [ Kn°wledge 1

Categories 1
Knowledge Objects of

Types ___ Knowledge
I

Concepts & I _ IPr°p°siti°nalI

Know_

__ Philosophy

of Language I

Abstractions ]

The knowledge base about a

system is a mixture of truth

and fallacy.

KnowledgeSources

_ Perception t

OwnExperiences ]

__ Own InnerStates ]

-_ Memory t

Introspection I
Other Alleged

Sources

Intuition I
-_ Prophecy I
-_ Telepathy I

Clairvoyance ]

Precognition ]

Figure 8
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KNOWLEDGE, INFORMATION, OPINIONS, AND

EVOLUTIONARY EPISTEMOLOGY

The definition of knowledge, information, opinions, and evolutionary epistemology

are provided.

Knowledge, Information, Opinions,

and Evolutionary Epistemology
_iiiiiiiiiiiiii_iiii!iii:i(iii!ili

Dialectical

process

Opinion 1

Opinion 2

l

_ Opinion n

Information:

Sensed objects, things,

places, processes, and
communicated information

and knowledge by language
and multi-media.

_-Evolution--

(z,_i8_:li_ii --Evo,otio.

Knowledge: [

f A body of justified tree [

I beliefs (JTB), such as, laws, k
--_I models, objects, processes,

I and principles, acquired by [ ]

[ humankind about a system I I

[ of interest. I ]
/

Evolution

Test and Use of

Knowledge: ] [

Study, investigation,

utilization, reflection on the |

state of knowledge, ..., etc. |
!

Figure 9
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KNOWLEDGE DEFINITION AND CHARACTERISTICS

Knowledge is defined and its characteristics are provided. Knowledge is relative with

potential biasedness and time asymmetry.

Knowledge
Definition and Characteristics

> The body of truth,
information, and

principles about a
system of interest

> Defined in the
context of
humankind.

> Therefore, relative.

> Primarily a product
of the past.

> Engineers tend to
be preoccupied with
what will happen.

> Result: Potential
biasedness and

time asymmetry of
knowledge.

Figure 10
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CLASSIFICATION OF IGNORANCE

Ignorance can be classified into three groups with a subsequent level of blind

ignorance and conscious ignorance. The state of ignorance for a person or society can be

unintentional or deliberate due to an erroneous cognition state and not knowing relevant

information, or ignoring information and deliberate inattention to something for various

reasons such as limited resources or cultural opposition, respectively. The latter type is a

state of conscious ignorance which is not intentional, and once recognized evolutionary

species try to correct for that state for survival reasons with varying levels of success. The

former ignorance type belongs to the blind ignorance category. Therefore, ignoring means

that someone can either unconsciously or deliberately refuse to acknowledge or regard, or

leave out an account or consideration for relevant information (di Carlo 1998). These two

states should be treated in developing a hierarchal breakdown of ignorance.

Classification of Ignorance

Ignorance

J

Concept & Know-

How Ignorance

Blind Conscious

Ignorance Ignorance

Object

Ignorance

Blind Conscious

Ignorance Ignorance

Propositional

Ignorance

Blind Conscious

Ignorance Ignorance

Figure 11
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CLASSIFICATION OF IGNORANCE

Ignorance can be viewed to have a hierarchal classification based on its sources and

nature as shown in the figure. Ignorance can be classified into two types, blind ignorance

(also called meta-ignorance), and conscious ignorance (also called reflective ignorance).

Classification of Ignorance

I Ignorance I

I Conscious Ignorance I I Blind Ignorance I
I I

Inc°nsTstencYl Inc°mpl_eteness Fall_acy I IUnkn°_wnable[ I Irrele! ance I I
I Confusion" III Inaccuracy I llunknowns I _ lUnt°picality[ ll_.U__ndecidabilitYl

I C°nflictl I Uncertainty I [ Absence I I Taboo I

,f
lapp roximations [

/agueness] I Coarseness [

I Likelihood

Isimplificationsl

I Randomness I

I I Ambiguity I
I

I Nonspecificity I [unspecificity[

[ Sampling I

Figure 12
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BLIND IGNORANCE

Blind ignorance includes not knowing relevant know-how, objects-related

information, and relevant propositions that can be justified. The unknowable knowledge can

be defined as knowledge that cannot be attained by humans based on current evolutionary

progressions, or cannot be attained at all due to human limitations, or can only be attained

through quantum leaps by humans. Blind ignorance also includes irrelevant knowledge that

can be of two types: (1) relevant knowledge that is dismissed as irrelevant or ignored, and (2)

irrelevant knowledge that is believed to be relevant through non-reliable or weak justification

or as a result of ignoratio elenchi. The irrelevance type can be due to untopicality, taboo, and

undecidability. Untopicality can be attributed to intuitions of experts that could not be

negotiated with others in terms of cognitive relevance. Taboo is due to socially reinforced

irrelevance. Issues that people must not know, deal with, inquire about, or investigate define

the domain of taboo. The undecidability type deals with issues that cannot be designated tree

or false because they are considered insoluble, or solutions that are not verifiable, or as a

result of ignoratio elenchi. A third component of blind ignorance is fallacy that can be

defined as erroneous beliefs due to misleading notions.

Blind I Conscious Ignorance I t Blind Ignorance I I

Ignorance

Blind Ignorance: Ignorance of _
self-ignorance or called meta-ignorance.

Fallacy: erroneous belief due to misleading notions

Unknowable: Knowledge that cannot be attained by
humans based on current evolutionary progressions or
limitations, or can only be attained through quantum
leaps by humans.

Irrelevance: Ignoring something.
Untopicality: attributed to intuitions of experts that are
negotiated with others in terms of cognitive relevance.

_. Taboo: due to socially reinforced irrelevance.

Undecidability: deals with issues that are considered
insoluble or solutions that are not verifiable. _i_ _!

Figure 13
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CONSCIOUS IGNORANCE

It has two primary components of inconsistency and incompleteness as detailed in the

figure.

Conscious Ig ' _ 'norance _o,,=o_,0......

f Kurt G6del (1906-1978) showed that a V-6-#_-7_ I_

logical agent could not be both consistent _ _-"---_

and complete; and could not prove itself _ro, d_t_ _ _ ,
I i, I

complete without proving itself _ _ _l I Nonspeeificity I

inconsistent and vise versa. _

Conscious Ignorance: A recognized self-
ignorance through reflection,

Inconsistency
- Confusion (Wrongful substitutions)

- Conflict (Contradictory assignments or substitutions)

- Inaccuracy (Bias and distortion in degree)

> Incompleteness

- Unknowns (The difference between the becoming
knowledge state and current knowledge state)

- Absence (Incompleteness in kind)

- Uncertainty (inherent deficiencies with acquired
knowledge)

• Ambiguity, Likelihood, Approximations _ii

Figure 14
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THEORIES TO MODEL AND ANALYZE IGNORANCE TYPES

This table maps available theories to various ignorance categories. Ayyub (2001)

provides details on this classification and theories recommended for various categories.

Theories to Model and Analyze

Ignorance Types

i Ignorance Type

Theory i Confusion & Inaccuracy Amblgmty Randomness & i Vagueness Coarseness I Snnplificatmn

i Conflict _ Sampling

Classical sets i

Probability

Statistics

Bayesian

Fuzzy sets

............................................................................ _...................... i ........................... i
Rough sets

Evidence

Possibility

Monotone measure

Interval probabilities

Interval analysis

t .......................................

Figure 15
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SYSTEM DEFINITION LIMITATIONS

Two limitations are provided that correspond to organized and non-structured

complexity. Ayyub (2001) discusses and demonstrates these limitations.

Limitations

m

(Bremermann 1962):

"'No data processing

systems, whether artificial

or living, can process more

than 2xlO 47 bits per second

per gram of its mass"

j_

Bremermann's limit

10 93 bits

Pattern Recognition

k" < 1093

For q x q spatial array defining

n = q2 cells with k colors

Human retina of about one

million cells: 21,°°°,°°° = 10300

2O

A 18

"_ 16
,"r

= 14--

.,- 12
o

N 10

8
o

L.
o

w

II1
i

\
\ Transcorn )utational Reg;on

4 5 6 7

Number of Colors (n)

9 10

Average Information Input in Bits per Second

Figure 16
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SELECTED METHODS

These selected methods were described at the workshop with examples.

Selected Methods

> Probability
v" Classical theory

v" Interval probabilities

v" Imprecise probabilities

> Bayesian methods

> Fuzzy sets, fuzzy arithmetic, constrained
fuzzy arithmetic, fuzzy probabilities

> Rough sets

> Possibility theory

> Fuzzy measure theory

> Dempster-Shafer theory of evidence
C7 _4_i

Figure 17
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MONOTONE MEASURES

Monotone measures provides a generalization of many methods listed in the previous

viewgraph.

Monotone Measures

iiiiiiii_iiiii_iiiii_iliiii!i!iii -._WAW'_i!i!iiiiii!iiiiiiiiiiL i!i!i/i!_iiii!ii!ii!iiiiii

A monotone measure for a non-empty family A of

subsets for a given universal set X, is a mapping as

follows:

f."A -_ [0,_]

For any pair A 1 and A 2 _ A such that A 1 (-_ A 2 = 0,

super-additive (cooperative action or synergy between A 1

and A2):

f(AI LJ A2) > f(AI) + f(A 2)

Additive (no interaction)

f(A 1 k_) A2) - f(A1) + f(A2)

Sub-additive (inhibitory effect or incompatibility)

f(A 1 t,..) A2) < f(A1) + f(A2)

Figure 18
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CLASSIFYING MONOTONE MEASURES

The relationships between monotone measures and selected theories are listed herein.

Ayyub (2001) provides details on these relationships.

Classifying Monotone
Measures

• Classical probability theory (crisp sets and

additive measures).

• Probability theory based on fuzzy events (fuzzy

sets and additive measures)

• Dempster-Shafer theory of evidence and its

monotone measures of belief and plausibility

(crisp sets and nonadditive measures).

• Fuzzified Dempster-Shafer theory of evidence

(fuzzy sets and nonadditive measures).

Figure 19
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CLASSIFYING MONOTONE MEASURES

The relationships between monotone measures and selected theories are listed herein.

Ayyub (2001) provides details on these relationships.

Classifying
Monotone Measures

Aj

"%/ /

.,dtAWm/U--_ili]i!iiii!i!i i_!iii_

• Possibility theory and its monotone measures of

necessity and possibility (crisp sets and nonadditive

measures). This possibility theory case is a special

case of the above Dempster-Shafer theory of

evidence by requiting underlying events to be

nested, i.e., A 1 c A 2 c ... c X.

• Possibility theory based on fuzzy events (fuzzy sets

and nonadditive measures).

• Other cases. A large number of cases can be

developed based on the nonadditive measures, such

as imprecise probabilities, and based on rough sets:,_,_,,__!

Figure 20
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UNCERTAINTY-BASED INFORMATION: UNCERTAINTY MEASURES

Uncertainty measures can be used to solve engineering problems, such as regression

based on minimizing uncertainty, combining expert opinions based on maximizing

uncertainty, and information consolidation based on the uncertainty invariance principle.

¢71a_caiset theory U(A) = log2IAI

Evidencetheory

ProbabnW/

Uncertainty-

based B_.= _._

Information
l_mb_ty theory

Uncertainty
Measures E_._

_p_ty a92s

fh(A)U(A) = & Io82laAldot Ho_e, cificity 1983
J0

Nonspeciflcity

•. N(m) = _, re(A! log2IAI Nonspeci_fity
A_

H(m) = - _ m({x}) !o82m((x}) Strife
Z_.X"

0.59) _. _(m)+S(m) 1992

B_

n

_ts(r) = _(r_ - r_+t)iog2_ (9.6o) Tom:,V(r) + S(r) t992

j=l

f(A) = _']_[I- 12A(x)" 11] (9,34) Fezz_ess 1979

F(m) = _ m(A)/(a) (9.61) 19SS
hE_'

it

u(r) = ]_,j Io_ =--=

ae_ n_ IAI

S(r) = _(r, i
.. -- rl+l) log2

NS(m) ffi __, re(A) log2 IAI2

_lUatlen

(ga)

0.22)

0.26)

•(9.36)

(9._7)

(9._4)

(9.5s)

Fm_aese

1983

_9s5

1948

1992

1992

Figure 21
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EXPERT OPINION ELICITATION

The process of expert opinion elicitation can be used to deal with uncertainty and risk

in cases were data and experiences are absent.

Expert Opinion Elicitation

> System Complexity

> Delphi method

,/technological forecasting

,/policy analysis

> Scenario analysis

> The basic Delphi method by Helmer (1968)

> Nuclear Regulatory Commission Method
(1999)

Figure 22
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EXPERT OPINION ELICITATION

The process of expert opinion elicitation is described in steps.

Expert Opinion Elicitation
m

Delphi method
v" technological forecasting

policy analysis

Scenario analysis

The basic Delphi method consists of the following
steps (Helmer 1968):

v" Selection of issues or questions and development of
questionnaires.

Selection of experts who are most knowledgeable about
issues or questions of concern.

v" Issue familiarization of experts by providing sufficient details
on the issues on the questionnaires.

Figure 23
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EXPERT OPINION ELICITATION

The process of expert opinion elicitation is described in steps.

Expert Opinion

> The basic Delphi method (Cont.):
¢" Elicitation of experts about the issues. The experts generally do

not know who the other respondents are.

V'Aggregation and presentation of results in the form of median
values and an inter-quartile range (i.e., 25% and 75% percentile
values).

¢" Review of results by the experts and revision of initial answers by
experts. Respondents who provide answers outside the inter-

quartile range need to provide written justifications or arguments
on the second cycle of completing the questionnaires.

v" Revision of results and re-review for another cycle. The process
should be repeated until a complete consensus is achieved.
Typically, the Delphi method requires two or three cycles or
iterations.

,/A summary of the results is prepared with argument summary for
out of inter-quartile range values. _............. ,_

Figure 24
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EXPERT OPINION ELICITATION

The process of expert opinion elicitation is described in a flowchart.

Expert Opinion
Elicitation

Identify Need of an[

Expert Elicitation

Process

$

Select Study Leader

_.-.=-_mlllllllllllllllm_ l Define Study Level

_-----Tt Process

SelectTeclmieal

Integrator 07I)

Identify and select peer
reviewers

Identify technicalissues, available information, desig_z

ana yses,informat on sources,and retrieva methods

Perform analyses, coUeet information relevant to

issues, and estimate needed quantities

I

Perform data Administer peer

diagnostic review

I I

Revise estimated quantities, and respond to peer

reviews

Document process and

communicate results

TIF Process_

Select Technical Integrator &

Fae litator (TIF)

Identify and select [
Identify and select experts and peer

technical issues reviewers
I

t'

Discuss and refine the

Issues

Train the experts for
elieitation

Facilitate group interaction, and

elicit opinions

Analysis, aggregation, revisions, resolution of disagreemeis

and consensus estimation of needed quantities

Document process an__

communicate results _i

Figure 25
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EXPERT OPINION ELICITATION

The outcomes of expert opinion elicitation is described including consensus and no

consensus.

Expert Opinion Elicitation:
Outcomes

No Consensus

i,

Equal Weights

Expert Elicitation
Process

I

Quantitative

Weights

I

Non-equal

Weights

,¢

Weighing

Consensus

f

Type 1: Each expert

believes in same

Ideterministic value or

[model.
IV

Type 2: Each expert

believes in same

probability distribution

for a variable or model

parameter.

Type 3: Experts agree
that a particular

probability distribution

represents their views as
a group.

Type 4: Experts agree that a

particular probability

distribution represents the

overall scientific community.

Figure 26

64



SUMMARY AND CONCLUDING REMARKS

A Hierarchy for ignorance is provided in this paper, and analytical methods are

identified for modeling various types. Novel analytical methods and algorithms to accurately

assess and model information content by classifying, analyzing and modeling ignorance

types for the purpose of constructing knowledge are outlined in the paper. As our reliance on

computational methods in simulation-based approaches for discovery and design, the need

for formal methods to analyze and model ignorance and uncertainty is expected to increase.

These methods can be used within a framework of decision analysis to meet the needs of

decision and policy makers.

Summary and

Concluding Remarks
_iiiiiiiiiii!ii_i!iiiiiiiiili!iill .._WIJ'"_iiiiiiiii!iii!!iiiii!_iiili!iiiii!i!iiiiiiiii [p['[

> Characteristics of future systems:
,/Complexity

v" Uncertainty
,/" Societal expectation
,/New risks

,/ Risk acceptance

> Simulation and decision-based design requires
quantitative methods for verification and
validation.

> The need to develop qualitative methods that
are suitable for engineering systems to deal
with uncertainty and ignorance in order to
manage risk.

Figure 27
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OUTLINE OF THE PRESENTATION

The following references describe in more detail the material given in this

presentation. These references are available from the appropriate sources or can be obtained

from William Oberkampf: wloberk@sandia.gov.
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BACKGROUND AND PURPOSE

Our focus is on developing a framework for identifying and estimating error and

uncertainty in nondeterministic computational simulation. This framework is composed of

six phases, which represent a synthesis of the activities recognized in the systems engineering

(operations research) community, the probabilistic risk assessment community, and the

numerical methods community. Our framework emphasizes models that are given by a set of

partial differential equations (PDEs) that must be solved numerically, although the

framework is also applicable to modeling in general. We stress a clear distinction between

the specification of the system, which is modeled by a set of PDEs, and the environment,

which should be representative of the boundary conditions and excitation for the PDEs. We

make a distinction between error and uncertainty so that the issues of representation and

propagation of each is aided. The issue of numerical solution error is generally ignored in

risk assessment analyses and nondeterministic simulations. Neglecting numerical solution

error can be particularly detrimental to uncertainty estimation when the mathematical models

of interest are cast in terms of nonlinear PDEs. Types of numerical error that are of concern

in the numerical solution of PDEs are spatial discretization error in finite element and finite

difference methods, temporal discretization error in time-dependent simulations, and error

due to discrete representation of strongly nonlinear interactions.

Background and Purpose =_Laboratories

_ngmeenng _clence# (,_nmr ..............................................................................................................

Develop a general framework for estimating uncertainty and error

in nondeterministic computational simulations

• Scope of framework:

• Continuum mechanics and energy transport

• Mathematical models are given by a system of ordinary or
partial differential equations

• Differential equations are solved by discretization methods
(finite element, finite difference, finite volume methods)

• Approach represents a synthesis of methods from:

• Systems Engineering (nuclear reactor risk assessment)

• Statistics (probabilistic structural mechanics)

• Numerical solution of PDEs (finite element methods)

7/1_01 /homs/wloberk/_m p._lida tion/pre_ntations.mine/UQ/O DU.NASA=wo rkshop.5-01
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STEPS IN QUANTIFYING UNCERTAINTY AND ERROR IN
NONDETERMINISTIC SIMULATIONS

One could identify four steps in quantifying uncertainty and error in nondeterministic

simulations. First, one constructs a mathematical model of the system of interest. This

model must define where the physical system ends and the environment, or surroundings,

begin. Second, one must specify where and how all of the modeled uncertainties and errors

appear in the formulation of the nondeterministic simulation. Third, given these uncertainties

and errors, one assumes a mathematical representation that will be used to describe these

uncertainties and errors. For example, uncertainties are traditionally represented by

probability distributions. Fourth, one must propagate and aggregate these mathematical

representations of uncertainty and error through the nondeterministic computational process.

Steps in Quantifying Uncertainty and Error
in Nondeterministic Simulations

_.g_neenng uc_ences uenter

1) Construct a mathematical model of the system of interest

2) Identify all relevant sources of uncertainty and error

3) Create appropriate mathematical representation for each
individual source of uncertainty and error

4) Propagate and aggregate all representations of sources through
the nondeterministic simulation process

/home_loberk/_ mp.valida _on/pm_nta_on_ mine/UQ/OD U.NA$A.wo_kshop.5-o 1
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PHASESIN NONDETERMINISTIC SIMULATIONS

This presentation proposes a comprehensive new framework, or structure, of the

general phases of modeling and simulation. The phases are, 1) conceptual modeling of the

physical system, 2) mathematical modeling of the conceptual model, 3) discretization and

algorithm selection for the mathematical model, 4) computer programming of the discrete

model, 5) numerical solution of the computer program model, and 6) representation of the

numerical solution. Characteristics and activities of each of the phases are applicable to a

variety of disciplines, e.g., computational fluid dynamics, structural dynamics, and heat

transfer. We also distinguish between aleatory uncertainty, epistemic uncertainty, and error

that might occur in any of the phases of modeling and simulation.

Phases in Nondeterministic Simulations

= _nglneenng _ctences (;enter
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TYPES OF UNCERTAINTY

We use the term aleatory uncertainty to describe the inherent variation associated

with the physical system or the environment under consideration. Sources of aleatory

uncertainty can commonly be singled out from other contributors to nondeterministic

simulation by their representation as distributed quantities that can take on values in an

established or known range, but for which the exact value will vary by chance from unit to

unit or from time to time. Aleatory uncertainty is also referred to in the literature as

stochastic uncertainty, variability, inherent uncertainty, and irreducible uncertainty. We

define epistemic uncertainty as a potential deficiency in any phase or activity of the modeling

process that is due to lack of knowledge. The first feature that our definition stresses is

"potential," meaning that the deficiency may or may not exist. In other words, there may be

no deficiency, say in the prediction of some event, even though there is a lack of knowledge

if we happen to model the phenomena correctly. The second key feature of epistemic

uncertainty is that its fundamental cause is incomplete information. Incomplete information

can be caused by vagueness, non-specificity, or dissonance. Epistemic uncertainty is also

referred to as reducible uncertainty and ignorance.

Types of Uncertainty _ _=o_

_ngmeenng _cJences (;on_r

Aleatory uncertainty is the inherentvariation associated with the
physical system or the environment.

• Also referred to as irreducible uncertainty, variability, and
stochastic uncertainty.

• Examples:

• Variation in thermodynamic properties due to manufacturing

• Variation in joint stiffness and damping in structures

• Variation in external excitation of a system

Epistemic uncertainty is a potential deficiency in any phase of the
modeling process that is due to lack of knowledge.

• Also referred to reducible uncertainty, model form uncertainty,
and subjective uncertainty.

• Examples:

• Poor understanding of fracture dynamics

• Poor knowledge of failure, misuse, or hostile scenarios

• Information from expert-opinion elicitation

7/16/01 /home!wloberk/_m p.valida_orv'p m_Bntatio n_,mine/UQ/O DU.NASA.workshop.5-o 1

6

Figure 5

73



ERROR IN COMPUTATIONAL SIMULATIONS

We define error as a recognizable deficiency in any phase or activity of modeling and

simulation that is not due to lack of knowledge. Our definition stresses the feature that the

deficiency is identifiable or knowable upon examination; that is, the deficiency is not caused

by lack of knowledge. Essentially there is an agreed-upon approach or ideal condition that is

considered to be more accurate, ff divergence from the correct or more accurate approach is

pointed out, the divergence is either corrected or allowed to remain. It may be allowed to

remain because of practical constraints, such as the error is acceptable given the

requirements, or the cost to correct it is excessive. This implies a segregation of error types:

an error can be either acknowledged or unacknowledged. Acknowledged errors are those

deficiencies that are recognized by the analysts. When acknowledged errors are introduced

by the analyst into the modeling or simulation process, the analyst typically has some idea of

the magnitude or impact of such errors. Examples of acknowledged errors are finite

precision arithmetic in a computer, approximations made to simplify the modeling of a

physical process, and conversion of PDEs into discrete equations. Unacknowledged errors

are those deficiencies that are not recognized by the analyst, but they are recognizable.

Examples of unacknowledged errors are blunders or mistakes; that is, the analyst intended to

do one thing in the modeling and simulation but, for example, as a result of human error, did

another. There are no straightforward methods for estimating, bounding, or ordering the

contribution of unacknowledged errors.

Error in Computation Simulations

Error is recognizable deficiency in any phase of the modeling and
simulation process that is notdue to lack of knowledge.

• Acknowledged errors are errors that can be estimated, bounded, or
ordered

• Finite precision arithmetic in a digital computer

• Lack of spatial grid convergence

• Conversion from continuum PDEs to discrete mathematics

• Unacknowledged errors are blunders or mistakes:

• Programming errors

• Input and output errors

• Compilation and linkage errors

/hometwlobeddoomp.valida_orVpresentat_ons minelUOJODU.NASA workshop 5.01
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EXAMPLE PROBLEM: MISSILE FLIGHT ANALYSIS

In this example we consider an analysis of the flight of a rocket-boosted, aircraft-

launched missile. We make the following assumptions concerning the missile:

.

considered.

The missile is unguided during its entire flight, i.e., only ballistic flight is

, The missile is propelled by a solid fuel rocket motor for the initial portion of

its flight, and it is unpowered during the remainder of the flight.

3. The missile is fired from a launch rail attached to the aircraft in flight.

.

stability.

The only aerodynamic surfaces on the missile are fins to provide flight

The analysis considers the missile flight to be in the unspecified future, i.e., the

analysis is an attempt to predict future plausible events, not analyze an event in the past. The

analysis requires the estimated uncertainty in all of the plausible events.

Example Problem: _} s_Missile Flight Analysis Laboratolies

_nglnoetlng _clences Cantor ..............................................................................................

• Problem description:

• Rocket-boosted, aircraft-launched missile

• Unguided during entire flight

• Propelled by a solid fuel rocket motor

• Fired from a launch rail on the aircraft

• Typical purposes of nondeterministic analyses:

• 1) Missile performance (normal environments)

• 2) Flight safety (abnormal environments)

• 3) Missile reliability (hostile environments)

/homeiwloberkl_mp.valldaSordpre_ntations.mlnelUO/ODU.NASA workehop.5-01
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PHASES OF NONDETERMINISTIC SIMULATIONS

We have identified four major activities that are conducted in the conceptual

modeling phase: system/environment specification, scenario abstraction, coupled physics

specification, and nondeterministic specification. The system/environment-specification

activity consists primarily of carefully identifying the physical or conceptual elements that

are considered part of the system and those that are considered part of the environment. The

scenario-abstraction activity attempts to identify all possible physical events, or sequences of

events, that may affect the goals of the analysis. The coupled physics specification identifies

and carefully distinguishes the possible alternatives for physical and chemical processes in

the system, and the coupling between these processes for the system/environment

specification and scenario abstraction under consideration. In the nondeterministic

specification activity, decisions are made concerning what aspects of the system and
environment will be considered deterministic or nondeterministic.

We have identified four major activities in the mathematical modeling phase:

formulation of the PDEs, selection of all auxiliary equations that supplement the differential

equations, formulation of all initial and boundary conditions required to solve the PDEs, and

selection of the mathematical representation of nondeterministic elements of the analysis.

The PDEs commonly represent conservation equations for mass, momentum, and energy, but

they can originate from any mathematical model of the system. The auxiliary equations are

equations that are required to complete the PDEs. The boundary and initial conditions

provide the required closure equations needed for all PDEs. Formulation of the

nondeterministic representations is based on the needs of the analysis, as well as the quantity

and quality of relevant information available.

s_bPhases of Nondeterministic Simulations N_n=[at_ratodes

=nof_rmg _c_es cem_ --

Conceptual Modeling Mathematical Modeling
Activities Activities

System/Environment Specification Padial Differential Equations

(Uncertainties) (Uncertainties and Ackaowledged Errors)

Scenario Abstraction Auxiliary Physical Equations

(Uncertainties) _- (Variabilities and Uncertainties)

Coupled Physics Specifications Boundary and Initial Conditions

(Acknowledged Errors) (Variabilities and Uncertainties)

Nondaterminiatic Specifications Nondeterminiatic Representations

(Variabilities and Uncertainties) I (Uncertainties and Acknowledged Errors)

/_e/wlober W_p._lidal[orCpr_ enla_do_.mine/UOJODU.NASA.wmkshop_5-01
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CONCEPTUAL MODELING ACTIVITIES

Three possible system/environment specifications for the missile flight example are

shown. The specifications are listed from the most inclusive (with regard to the system

specification) to the least inclusive. System/Environment Specification 1 considers the

missile and the atmosphere near the missile to be part of the system, whereas the launching

aircraft and target are considered part of the environment. System/Environment

Specification 2 considers the missile and the aerothermal processes occurring on the missile

to be part of the system, whereas the atmosphere near the missile, the launching aircraft, and

the target are considered part of the environment. System/Environment Specification 3

considers the missile to be the system, whereas the aero thermal processes, atmosphere near

the missile, launching aircraft, and target are considered part of the environment. Even

though this is the simplest specification considered, it still allows for significant complexities

in the analysis. Note that in the diagram the only specification, or tree element, delineated is

System/Environment Specification 3.

_ SanfflaConceptual Modeling Activities _Laboratocbs

..... _ngmoenng _cJenena uenmr ........................................................................................................................

Figure 9
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ACTIVITIES IN THE REMAINING PHASES OF NONDETERMINISTIC

SIMULATIONS

The discretization and algorithm selection phase accomplishes two related activities.

First, it converts the continuum mathematics model, i.e., the differential equations, into a

discrete mathematics problem suitable for numerical solution. Second, it provides the

methodology determining how a discrete set of computer solutions can be most appropriately

used to accommodate the nondeterministic features of the analysis. Three activities are

identified in the computer-programming phase: input preparation, module design and coding,

and compilation and linkage. Input preparation refers to the analyst's conversion of the

mathematical and discrete model elements into equivalent data elements usable by the

application code. The second and third activities relate to the building of the application

code itself. Four activities are identified in the numerical solution phase: spatial and

temporal convergence, iterative convergence, nondeterministic propagation convergence, and

computer round-off accumulation. In the solution representation phase we have identified

five activities: input preparation, module design and coding, compilation and linkage, data

representation, and data interpretation. The first three activities are very similar to those

discussed in the computer-programming phase. The data representation activity includes two

types of similar activities: 1) the representation of individual solutions over the independent

variables of the PDEs and 2) a summary representation that combines elements of the

multiple individual deterministic computer runs. The data interpretation activity refers to the

human perceptions or impressions that are formed based on observation of the represented
solutions.

Activities in the Remaining
Phases of Nondeterministic Simulations _ _t_

Discretization and

Algorithm Selection

Computer Programming Activities

-- , I--o-1(Up, acknowledged E_ors) i Dlscret[zation of BCs az]cl ICs

Modvl_ Design and Coding J (Ack_owlMged F_'o_)

Compilationand Linkage (Ackqow_lP_gge_P.,rrom)

(Unaclalowledged Emirs) D_ign of Computer _pedmenls
(Acknowledged Enots)

Solution Representation

Numerical Solution Activities

Activities l InputPreparation

I Spabia[andTemporal Convergence | (Unackaowledged Eraars)I(Ackaowletiged Error) 1 ModuleDesignandCodingIterativeCom,ergence (Unacknowl_iged E_)

(AcblowledgeA Errata) _ Cornptiation_ Linkage

v N_c,determinlsticPro atio_Convergence _ I (U_cknowledgcdE_rs)

(Aclalowtcdgcd Enols) DataInterprofation
(U_cknowlcdged Er_xs)
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TREE-STRUCTURE FOR MODELS, SOLUTIONS, AND REPRESENTATIONS

The figure illustrates the multiple models, numerical solutions, and solution

representations that are addressed in the missile flight example. As shown in the figure, six

conceptual models are identified, many more are implied, but for illustration only one is

selected for further development and analysis. This single conceptual model spawns two

alternative mathematical descriptions, the 3-DOF and 6-DOF models, both of which are

carried through the remaining phases of the modeling and simulation process. For simplicity,

only one of these mathematical models shows further development, although it is understood

that identical development of Mathematical Model 1 is taking place in parallel with

Mathematical Model 2. The discretization and programming phases identify alternative

model choices that are not considered further in this example. Continuing into the numerical

solution phase, nondeterministic effects that were identified in the conceptual model and

further defined in the mathematical modeling phase are computed via multiple deterministic

numerical solutions. How these solutions were computed was specified in the propagation

method identified in the discretization and algorithm selection phase. Finally, in the solution

representation phase, the multiple solutions are merged to represent the complete
nondeterministic solution.

Tree-Structure for Models, Solutions, _ s_=and Representations "_Laboratodes

_ngln_ermg _clences Genler ....................................................................................................................................
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SUMMARY AND CONCLUSIONS

We have presented a comprehensive, new framework for modeling and simulation

that blends the perspective of three technical communities: the systems view from the

operations research community, propagation of uncertainty from the risk assessment

community, and the numerical solution of PDEs from the computational physics community.

The activities that are conducted in each of the six phases of modeling and simulation were

discussed. We carefully define and distinguish between uncertainty and error. Our

framework applies regardless of whether the discretization procedure for solving the PDEs is

based on finite elements, finite volumes, or finite differences. The formal distinction

between aleatory uncertainty and epistemic uncertainty in this framework drives one toward

different mathematical representations for each type of uncertainty. Probabilistic

representations are clearly appropriate for aleatory uncertainty, and various other modem

information theories are, we believe, more appropriate for epistemic uncertainty. We

recommend research into evidence (Dempster/Shafer) theory. This theory, however, is not

well developed when compared to traditional probabilistic methods. If one were to take the

step and represent aleatory uncertainty probabilistically and epistemic uncertainty with

evidence theory, then one must face the question of propagating these components

concurrently through the modeling and simulation process. Propagation of Belief and

Plausibility measures from evidence theory through complex PDE models is a research topic.

Summary and Conclusions _ _===
.... _ngmeermg _clen_s (:enmr .....................................................................

• Presented an overview of the phases of nondeterministic
simulation and the activities that occur in each phase

• Nondeterministic analyses should be focused, e.g., performance,
reliability, or risk assessment.

• We have distinguished between sources of aleatory uncertainty,
epistemic uncertainty, and error

• Mathematical representations of uncertainty:

• Aleatory uncertainty: traditional probability theory

• Epistemic uncertainty: Dempster-Shafer theory

• Areas of research in Dempster-Shafer theory:

• Construction of input Belief and P/ausibility measures

• Combination of evidence is non-unique

• Propagation of Belief and Plausibilitymeasures through the model

7/16/01 Ihome/wiobe_Wcomp.valida_onlpre_entatlons.mir_JUQlOOU.NASA.workshop.5_01
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Outline

• Introduction

• Motivation

,, Sources of Error in Probabilistic

Analysis

,, Example Problems

mProposed Strategy i._

,, Summary and Conclusions
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Figure 2
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Motivation

s Confidence in probabil!istic assessments is required to
support

Certification

=.Design analysis
Critical decisions

= First step towards verification and validation of probabilistic
models

-Understanding where errors originate wilt suggest more
robust computational strategies

_D S_,_._th_eSt Res'earch tn_'tit_e

Figure 3

Sources of Error

w Model :approximation
_ Eirstor second-order approximation
• Calculation of derivatives

=Uncertainty characterization
insufficient data

_ SelectiQn of I_corred distribution

= Probability integration
!nsufficient number of sam_!es

_,Firsf or:second-order approximation

= Numerical algorithm
e Transformations to standard :normal

= Convergence error in finding the MPP

®A!gorithm error (wrong or multiple MPP )

mAll forms of error are:reducible
= V&V of theprobabilistic ana_Sis

=Increased data collection

.,Development of more accurate and
robust analysis methods

Figure 4
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Algorithm Error is Most Troublesome
,,r" r

,_Source of error is inability of the
algorithm to locate the correct MPP

local minimum

,_multiple mimmums
violations of the assumptions of a smooth
and continuous response surface,

,t For robustness, algorithm must be
able to locate all MPP's

,, Troublesome aspect is that problem
can arise after transformation to
standard normal, unbeknownst to
the user

Can occur when mapping from
original to standard normal space

llg20 as x-'_p_,e

4 u_..,

_-- i -zZ -4

"_'_'_4_'_-2 _ '_, u-space

t,

Figure 5

Probabilistic Analysis Methods

= Fast Probability Integration Methods _,,:_
Adva need mean vatue

First and second-order reliability methods
Fast convolution integration using FFT

w Sampling Methods
Monte carlo simulation

Sphere-based importance sam
Latin hypercube simulation

Adaptive importance sampling

,, Probabilistic fault-tree

piing 4_

_,S" POint tMPP}

[_,.,

w Response surface method

Figure 6
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How. to Find the
Most Probable Point (MPP)

Formulation
Minimize: L) = _ {Maximum joint pdt')

Sul*tie_ lo: g(x) = g(u) = 0

mStandard optimization methods
Modified Method of Fesibte Directions

(MMFD)

= Sequential Linear Programming (SLP)

., Sequential Quadratic Programming
(SOP)

"Tailored methods
o Hasofer-Lind

Rackwitz_Fiessler

Others

t,,(u) ,

Most PrObable

Point (MPP)

g=O

Figure 7

NESSUS
Probabilistic Analysis Software

. P_I_':_,lvl'C}

--Us_',defitle_l

_t_r

-PC (','__& N,_4, _'__'u_}

21@622 6566

Figure 8
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Convergence Criteria
n M " •odnfied RF" Optimization

! Checking only _rnay not be
sufficient

g.,has multiple:mpp's
e[_ may stabilize (converge). but the

MPP maynot

1 Check angle between
successive MPP during
iteration

te=cos l","=]

t Also check g=O. Summary:

_ =le...-_,l: e,<-,o1:2

_,= o,.,,(x)[__tot3

Figure 9

Example Problems

u Three examples solved
From SAE Gll Probabilistic Methods, Numerical Review Subcommittee

Goal is to investigate accuracy and error (not efficiency)

t Solutions obtained using
Monte Carlo (MCS)

wFirst-order Reliability Method (FORM)
Second-order Reliability Method (SORM)
Advanced Meat1Value (AMV+)
Adaptive Importance Sampling (AIS)

•Response Surface Method (RSM)

NESSUS 3.0 software used for aH problems
• Modified Rackwitz-Fiesster (RF) attempted first

If problems, switched to sequentia_quadratic programming (SQP)

_ Sot._thwest Reseaoct'_ Iz;st#ute

Figure 10
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Example Problems - The Details
m = .......

Monte Cado
100M samples

= 95% confidence bounds

AMV+
5% iteration tolerance

u AIS
o Second order (curvature based)

5% error and 95% confidence

= RSM
* Central Composite (CC) design used

10M samples

_r^2 reported for each problem

2¢ move limits on each random variable

"_ Southwest Res'_t'ch Ir,s_#,Jte

Figure 11

Example I-Gear Contact Stress Model
i,iJluH Jl ,u !

'Vat

Response given by

z=_!; 2_:.,E_L_i__ 2

...... i f_÷_) t

where
?

:and

2 I _0 h_r_
X _) I .... | .......

eias_i_ {kst) 30000 _500 i'_ra_

:_evcable surface 88 4i4 I',[:,_mal

_r ofteel_ d _8 = 6;0 N,_mal[

12

Figure 12

88



Example I - Gear Contact Stress Model

Linear transformation (normal
to standard normal)

= Response surface same in
x-space and u-space

_0,,_ --_tT "j i

i i
o,__

$ 9

r_:.7::,

N p 4_T,; xf •

..4

Figure 13

Example 1 - Gear Contact Stress Model

= All methods

compare
reasonably wel!

RSM in: error in
left tail

Due :to fit a_eUnd
central region

= But what is the
error?

l:i

:2

,3:

;t

Figure 14
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Example 1 - Gear Contact Stress Model
c

==Percent error from ,_<,,_.
Monte Carlo
solution (100M _'_
samples)

69%

,=95% confidence
bounds _ 4{,,_,

= All methods posses _._,
some error

o x-space and u-space _
function approximation

e convergence tolerance .2_

JJ , cJ

-_t--- AIv_V.

......_..L:.. - _,_t'.i'. "....... ;..!

•4 3 .2 d U 1 2 :_ ,_

I Even for mildly nonlinear problems, accurate functionapproximations in × ar}d u-space are important

_' Sc_thv_e,_ Research #_db,#_

Figure 15

Example 2 - Maximum Radial Stress of a
Rotating Disk

- Response function

:'3+_" p "(_..),,_,,= - /
: 8 1((9.81,(39.371)( ' ". 60) " o _ I

= Random Variables

Mar! Name Mean SD I Otst
Pols,SOffS " " ' '

v } Raiio 0.30 0.005 Normal

I Density
P i (tiffin3) 0,284 0.002 I Normal

10500 288,7 t t 0 00_
i (rpm) ....

' _ Outer
i 8 0.02 Normal

ro _ Radius (in)
i inner

ri } Radius (in) 2 0,01 Normal

_ So_th_'est Rese._rch lflst#d_e 16

Figure 16
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Example 2 - Maximum Radial Stress of a
Rotating Disk

= Nonlinear mapping _rorn
x-space to u-space due to
extremely non-normal joint pdf

0o21 "--.._.._
* J I

8,1

_ Soulhwes! Resear,:;,l _,_y,s_ibJ_

2 :i'O

x-space--_75 ,_

: _'* i ...t44])z

4 _ LL.#;)

u

Figure 17

Example 2:-Maximum Radial Stress of a
: i , :Rotat ng Disk

J, Plot: SHOWSg:Ocontours
fo[ all 9 teveis

w:Modified RF converged
on only 4 MPP!s

m Switched toSQP and
found all MPPIs

Note that first,order fit to

response reasonably
good: near origin, aad
worse in tails

'i

--4 -_ "- "_!':"-__"_" .........

! £ ,

Figure 18
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Example 2 - Maximum Radial Stress of a
Rotating Disk

= At this scale_ all

methods appear to ,
have done welt

Some error _ntail _

regions o

,7

t9

Figure 19

Example 2 - Maximum Radial Stress of a
Rotating Disk

,, Right tail shown

Good Solutions
from SQRM, AiS,
and RSM

:" Systematic erro r in =-_,,,
FORM: and AMV÷
Solutions

2O

Figure 20
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Example: 2 - Maximum Radial Stress of a
Rotating Disk

_ln,, I i

a Plot shows magnitude
of error can be quite
argo even for
converged solutions

• FORM & AMV+

• SORM and AIS _,,_,_
perform very well,
even though u-space ,_,,_ .:
is highly nonlinear

,, RSM performs well "-.
because fit in x-space '_
iS good. _ ....... _ ....

u

e Large left tail error in RSM
is sampling error

_ ,._o_thw_,_st Research tr_sti_,ut_

Figure 21

Example 2- Maximum :Radial Stress of a
Rotating Disk

Lessons Learned

m Firsberder approximat on in::u_space may not:be accurate for
highly nonlinear funCtiOn
• Nonli:near n X_.space
:* Nonnormal transformation

mAMV÷ converges on location Of MPP. Computed probability
then: depends on wh:at order of approximat: on Is used,

=AMY+ used here is based on flrsborder: Second order
available, but not used veG often,

u Recommendatbn isto use AMV÷ to locate MPP, Then use
A_S to compUCe preba:bi ity

Figure 22
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Example 3 - Multiple MPP Problem

= Response function

,'_ 4 ZZ =: +2X_ -X; -X_

u X_N[O,t]

.fX_~N[0,1]

= Response surface same in
u-space and x-space

= Slight nonlinearity in )(2

23 ¸

Figure 23

Example 3- MuIti pie MPP Problem

. g=O bveis numbered in
contour plot

= Again., the modified RF
algorithm reported
convergence errors,

= Switched to SOP and found

one MPP per limit state

t Function is,symmetric about
X2 -:therefore_ two MPP's
exist_

, Solutions reported on
following charts are based on
one (shown) MPP

_ _c_,'#!WeSt R_se_rcti ,_t_stJ_,dte

Figure 24
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= Very steep cdf in
left tail

t Unable to discern ,
difference in
solutions

n Systematic error in '
right tail observed = "

,1

uRSM obviously bad _,
Full quadratic is poor
approximation to _
original function .4

• Using widermove limits ,_
improved tail, but at ,.-,_, _._
expense of central
region

Example 3- Multiple MPP Problem

Figure 25

Example 3 - Multiple MPP Problem

mLeft tail response
shown

= Error observed at

levels 1-6 by all
methods

=Error due to use of

only one MPP "_

= RSM error due [o ._
poor function
approximation

,$

.2 {,_

_ Southwest Research It_st_te

Figure 26
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Example 3- Multiple MPP Problem

=Percent error plot

w All methods have

significant error

=Need a more general
approach that Can

automatically
switch optimizers if trouble ¢"_
encountered

identify multiple MPP's

solve muFtiple MPP

problem

Figure 27

Proposed Strategy: System Approach

= Case 5; Leve! 4studied in
mo_e detail

=:Monte Carte sampiJng on
transformed response function
(u,space)

u2M samp es used; but stili fast

= :_Ominimum _ points

1 :2.915

l&SO 2 9t8

3 _7.00 2_8
4 _78o 2.920,
5 19.10 2,92!

6 17,90 :2;921

"t 17.50 292_

8 0.80 2923

10 '15_ 2.925:

_ So_,,thwes_,Reseamh #}sdt,_te

' _:!l I̧ ¸

\ "i J

Figure 28
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Proposed Strategy: System Approach
u,

m Use NESSUS probabilistic
fault tree to solve multiple
MPP problem

= Adaptive Importance
Sampling used to compute
union of two limit states

= Sampling based MPP search
and system probability
calculation applied to each
tevel

mExcellent results obtained

v2

3._

3,6

3.4-

,%

\

[g_TEq

J
!

/ /
/ /

/, / /

/

Figure 29

= All forms of error a_e [educible
, V&Mof the probabilistic analysis

Increased data coli_tion

- Development of more accurate and robust:analysis methods

Assess_: via deterministic Or probabilistic analysis

= Types of e_rors n probabitistic analysis
u M_el: approximat on

• U:ncertainty character zation

• Probability integration

Numerical a]godt hm

Vadous errors quantified in paper using simpte anaiytical
models

_, Simple :but effective strategy used to solve multiple M PP
:problem

Figure 30
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Conclusions
= ._

mFor challenging problems, trained analysts are required to
compute accurate solutions

= Advanced mean value (AMV+) method and the modified RF
optimizer were the onty methods that identified when
problems were occurring

w Solutions to difficult problems (multiple MPP) can be solved
using existing methods, but detailed knowledge of the
problem is required

= Robustness of computer code not only measured by its
ability to get a solution, but to get the right solution
®Solution error must be quantified before confidence is gained
o Methods must warn when problems are suspected
®Adaptive/intelligent methods can produce accurate solutions

Figure 31
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OUTLINE

Existingpredictivetechnologies
Probabilistictechnology
Practicalsoftwarearchitecture
TypicalInputs
Typicaloutputs
Examples
Latestdevelopmentin probabilisticsoftwaretools

.... _ :_ii_iiiiiiiiiiiiiilililiiiiiiiiliiiiiiiiiiiiiii!iiii!ii_iU:¸¸ •

Outline

• Existing predictive technologies

• Probabilistic technology

• Practical software architecture

• Typical Inputs

• Typical outputs

• Example

• Latest developments in probabilistic software tools

Unipass Technologies

Figure 1
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EXISTING PREDICTIVE TECHNOLOGIES

Traditionally, predictive analyses have used either a deterministic or a statistical

approach. The deterministic approach attempts to predict the outcome of a process or event

using physics-based mathematical models of the event by assigning single values to the

variables that enter these models and affect the outcome. Furthermore, the deterministic

approach also assign a safety factor to the outcome in order to account for the overlooked

variability and uncertainties.

In contrast, the statistical approach relies on pure statistical data of process or event

out come that can often be flawed or difficult to obtain. Both of these approaches work in

isolation, failing to consider any other factors that may significantly affect the result.

.........,i Ho
xis lng redlctlve ec no ogles ave any Shortcomings

• Deterministic approaches

• Develop a deterministic event model using physics, process, rules, etc

• Assign a single value to each deterministic event model variable and calculate a
single value for the outcome

• Calculate a single adjusted value of the outcome by applying a safety factor to the
calculated outcome to compensate for uncertainties

• Predict future of the event using the single adjusted value of the outcome

• Confirm and/or calibrate the single adjusted value by tests and/or field data

• Statistical approaches

• Collect sufficient statistical data for the similar event outcome

• Calculate mean, variance, and distribution of the the event outcome using
collected data

• Predict future of the event using the mean, variance, and distribution of the the
event outcome

Unipass Technologies

Figure 2
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PROBABILISTIC TECHNOLOGY

The probabilistic analysis begins by developing the deterministic models of the

process and identifying the uncertainties associated with such process. There are two type of

uncertainties that should be identified, namely, Type I Uncertainties and Type II

Uncertainties. The Type I Uncertainty representing the inherent uncertainties associated with

the deterministic model variables (e.g., variability of the load in a stress model that calculates

the stress under the effect of such load) while the Type II Uncertainties are the uncertainties

that are not covered under the Type I Uncertainties (e.g., uncertainties associated with lack of

statistical data, model imperfection, human error, measurement error, etc.), ff necessary, new

variables should be defined to represent Type I and II Uncertainties. Upon completion of the
deterministic models and identification of the uncertainties, the Probabilistic Process Models

(PPM) should be built. These models describe the outcome of an event using the

deterministic models and the Uncertainty Type I and II variables. The Variable Probability

Distribution Models (VPDM) is built using the available test/field data and/or the analyst

judgment. The PPM and VPDM are then used to perform probabilistic analysis utilizing a

probabilistic software engine (e.g., UNIPASSTM).

_:_i_iiiiiiiiiiiiiiiiiiiiiiiiii_iiii!iiiiiiiiii:ii!i;;_i i̧ _ !iilil

ProbablllStlC Technology Ehmlnates

The Shortcomings of The Existing Technologies

• Probabilistic approaches

• Develop a deterministic process models using physics, process, rules, etc

• Identify uncertainties associated with the deterministic-process-models variables
( Type I Uncertainties)

• Identify uncertainties that are not associated with the deterministic- model variables
( Type II Uncertainties)

• Define new variables representing Type I Uncertainties if necessary
(Type I Uncertainty Variables)

• Define additional variables representing Type II uncertainties
(Type II Uncertainty Variables)

• Develop a probabilistic-process-model by incorporating all Type I and II Uncertainty
Variables into deterministic event model

• Develop variable statistical models for all variables including deterministic model
variables, Type I Uncertainty Variables, and Type II uncertainty Variables using test/field
data and/or analyst judgment

• Perform probabilistic analysis using probabilistic event model and statistical variable
models

• Predict future of the event using the obtained results

• Calibrate/update models using tests and/or field data

Unipass Technologies

Figure 3
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PROBABILISTIC TECHNOLOGY

The probabilistic approach incorporates the best of deterministic and statistical

methods. This is achieved by using the deterministic process models and enhancing them by

taking into account the uncertainties associated with the process and variables (e.g., inherent

uncertainties, modeling and measurement errors, lack of data, etc.) and identifying the

individual factors that are key to predicting a likely outcome. This approach optimizes the

analysis, zeroing in on the factors that actually drive the process.

As oppose to statistical approach the probabilistic technology utilizes the information

regarding the variables that enter the process models and affect the outcome and does not

require process statistical data for the analysis, however, such data may be used to fine tone

the predictive models. Furthermore, the technology quantifies the safety measures and

prediction accuracy by providing probabilities associated with the process outcomes.

Probabilistic Technology

Is Superior to The Existing Predictive Technologies

Utilizes physics/behavioral/rule/process based predictive model

Considers inherent uncertainties, modeling uncertainties, lack
of data, human error, measurement error

Compensates for unknowns using:

Utilizes past performance data to improve accuracy

Does not require event's past performance data to develop
predictive model

Quantifies safety measures

Quantifies prediction accuracy

Unipass Technologies

Figure 4
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PRACTICAL SOFTWARE ARCHITECTURE

A practical software architect works through the combination of one or more

databases containing the information about the process variables and/or outcome; a Filter

software that cleans up the databases using a series of rules identified by the analyst; a

software engine that reads the data from the databases and identifies the best Variable

Probability Distribution Models (VPDM) for the process variables (e.g., our ProFit TM

software); a software engine that can create the Probabilistic Process Model (PPM) using the

deterministic models, from the deterministic software systems, and the information residing

in the databases (e.g., our ProModeler TM software); and probabilistic engine (e.g., our

UNIPASS TM software engine) that perform the probabilistic analysis. The PPM is a

mathematical representation of how an event works which may be behavior, process, physics

and/or rule based. The VPDM is the probability distribution of the PPM's variables.

Utilizes Many Many Software Tools and Databases

Update Variable Models

Variable

Models I

Process

Models _

/\

\/

RESULTS

UpdateProcessModels

Unipass Technologies

Figure 5
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TYPICAL INPUTS

The probabilistic analysis requires four essential items including (a) the Probabilistic

Process Models (PPM) that describe the outcome of an event and are constructed using the

deterministic models (e.g., a finite element model or a crack growth model) and the
mathematical models that describe the uncertainties and are not considered in the

deterministic models (e.g., lack of statistical data, modeling error, human error, measurement

error, etc.); (b) the PPM's Deterministic Variables; (c) the probability distribution models

that describe the randomness of the Uncertainty Type I Variables (e.g., Type I Uncertainties);

and (d) the probability distribution models that represent the randomness of the Uncertainty

Type lI Variables (e.g., Type II Uncertainties).

,_"-- Typical Inputs Provides for

Integration of Process and Uncertainties

0
0

Unipass Technologies

Figure 6
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TYPICAL INPUTS - DEFINING VARIABLE PROBABILITY

DISTRIBUTION MODELS

Large Amount of Data Available: One of the following techniques may be use to

construct the Variable Probability Distribution Models (VPDM) when large amount of data is

available (more than 50 data point).

Approach 1: Assume a distribution type and calculate the distribution parameters

using the method of moments. Perform the goodness-of-fit tests to eliminate the

unacceptable distributions. Use probability paper approach to select the best distribution in

the desired range.

Approach 1: Assume a distribution type and calculate the distribution parameters

using the maximum likelihood method. Perform the goodness-of-fit tests to eliminate the

unacceptable distributions. Use probability paper approach to select the best distribution in

the desired range.

........... : : : ::
,__:,_i _,_ :: ............

ri k,Typical Inputs Include Va ..o e Models

Large amount of data available

• Distribution type: identify distribution type using probability paper

and/or goodness-of-fit-tests. Must have large amount of data

(usually 50-100 points) to discriminate between distribution types.

Common tests are K-S test and anderson-darling test (preferred).

Identify distribution type using probability paper and/or goodness-
of-fit-tests

Distribution's parameters: calculate distribution's parameters using
method of moments or maximum likelihood estimator for the

selected distribution type

Unipass Technologies

Figure 7
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TYPICAL INPUTS - DEFINING VARIABLE PROBABILITY

DISTRIBUTION MODELS

Small Amount of Data Available: Assume a distribution type and calculate the

distribution parameters using the maximum likelihood method. Utilize

hyperparameterization (assume parameters of the random variables to be random variable

themselves) to account for lack of sufficient data. Use probability paper and/or the

goodness-of-fit test approach to identify all acceptable distribution types within the desired

range. Select the distribution that provides for the most conservatism.

_I:puts Include Variable Models

Small amount of data available

• Distribution's parameters: Calculate distribution's parameters using
maximum likelihood estimator for the selected distribution type and use
hyperparameterization to consider uncertainty due to lack of statistical
data

• Distribution Type: Select a distribution that is conservatively consistent
with the available data

Stress Strength

\ l bI _ \
I 'q

a ] \ b / ]_ \c
/ _ / / _ \

/ \ //." k x.

/ ',,,,/.,.,,,,,..,

"a" and "b" are more conservative than "a" and "c"

Unipass Technologies

Figure 8
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TYPICAL INPUTS - DEFINING VARIABLE PROBABILITY

DISTRIBUTION MODELS

Very Limited Amount of Data Available: Assume Beta or Uniform distribution type.

Use hyperparameterization for poorly quantified physical bounds.

No Data Available But Engineering Analysis Exists: Construct a user-defined

distribution as shown in the example below.

Typical Inputs Include Variable Models

Very limited amount of data available

• Use Uniform or Beta (good quantification of physical bound)

• Use Uniform or Beta with Hyperparametefization (poor quantification of

physical bound)

No data available but engineering analysis exists

• User defined distribution

• Example

_" Worst stress value from FE analysis 120 ksi

Maximum spread between best and worst condition is 20 ksi

Actual stress could be off by 10%

Stress = C (120-S)

Where C is uniform between 0.9 and 1.1 and S is uniform between 0

and 20

Unipass Technologies

Figure 9
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TYPICAL INPUTS - DEFINING VARIABLE PROBABILITY

DISTRIBUTION MODELS

No Data or Engineering Analysis Exists: Construct a user-defined distribution as

shown in the example below.

Typical Inputs Include Variable Models

No data or engineering analysis available only engineering

judgment can be made

• User defied distribution

° Example: consider a turbine blade thickness

Nominal value=0.058

Allowable tolerance = +0.005 which occurs 90% of the time

)_ Maximum deviation outside acceptable tolerance= _+0.002 (10%

of the time)

90%

0.051 0.053 0.063 0.065

Unipass Technologies

Figure 10
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TYPICAL INPUTS - DEFINING PROBABILISTIC PROCESS MODELS

In general, an event model is a mathematical expression relating a dependent variable

y, to a set of observable variablesx, and a set of unobservable model parameters z. The model

is usually constructed on the basis of simplifying principals, and sometimes on purely

heuristic basis when underlying phenomenon is not well understood. In addition to inherent

uncertainties, there are at least three major phenomena that give rise to uncertainty in an

event model. These include model imperfection, measurement error, and statistical

uncertainty. The process of model construction mounts to estimating the unobservable model

parameters z based on a set of measurements x__i,and yi, i=l ...... m of the observable model

variables. Following the Bayesian paradigm, we express our lack of precise knowledge about

z by assigning a probability distribution to it. The Bayesian Updating Rule allows us to

combine previous information about z with information obtained from observed data to arrive
at a distribution.

Typical Inputs Include Process Models

• Known relationship (explicit or implicit)

• In many instances, the exact theoretical relationship for the predictive

model will be well known from a theoretical relationship such as from

an engineering handbook or a deterministic code

• Know data to estimate predictive model

• In some instances, it may be possible to construct an approximation to

the predictive model by using regression models of empirical data or
similar statistical methods

Unipass Technologies

Figure 11
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TYPICAL OUTPUTS

In general, probabilistic analysis produces three categories of information that would

help achieving an informed decision. This includes probability information, most likely

conditions, and sensitivity data. These categories are briefly descried in the following charts.

........................_ii_i_!:ii!i_ i!i II¸: iil i_¸¸¸¸¸

Typical Outputs Provide for Predicting

the Future, Understanding the Present, and Explaining the Past

Unlpass Technologies

Figure 12
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TYPICAL OUTPUTS

Probability Information: The probability information includes reliably, failure

probability, cumulative distribution function (CDF),and probability density function (PDF).

The probability information may be used to identify the most critical failure mode; estimate

the reliability, potential risk, and liability. It may also be used to determine the acceptable

response range or calibrate the safety factors.

Most Likely Conditions: The most likely conditions is identified by the most-

probable-point (MPP). In general, the MPP represents the most likely values of the random

variables at which the critical or significant condition of the user-defined event will occur. In

engineering, a critical condition may be an undesirable event such as component failure or

instability, or a desirable event such as extended component life or mission success.

__S Includes Probability Information,

Most Likely Conditions, and Sensitivity Data

• Probability information (e.g., failure probability, reliability, probability values,

CDF, or PDF) can be used to:

• Estimate reliability, failure probability, risk, and liability

• Calibrate safety factor and identify critical failure mode

• Minimize number of tests, inspection costs

• Estimate response range

• Etc

• Most-likely conditions (e.g., most-probable-point) can be used to :

• Identify most-likely combination of predictive model variables in the field

• Certification process tests, reliability demonstration tests, most likely test setups,
safety control systems

• Etc

Unipass Technologies

Figure 13
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TYPICAL OUTPUTS

In performing probabilistic analysis, it is often of interest to determine the sensitivity

of event outcome or its calculated probabilities with respect to model variables and their

parameters appearing in the event model. These measures are useful for many purposes

including but not limited to identification of key event drivers, important sources of

uncertainty, optimal condition, resource allocation, and analysis of model uncertainties.

Often, these measures also provide insight into the physics of the event.

•_ _

Typical Outputs Includes Probability Information,

Most Likely Conditions, and Sensitivity Data

• Sensitivity information includes physical and probability sensitivities
and can be used to:

• Identify key variables

• Identify worst load combination

• Automate processes

• Minimize number of tests

• Minimize weight

• Minimize response variation

• Minimize number of tight tolerances

• Minimizes costs (e.G., Development, manufacturing, inspection,
maintenance, and/or warranty costs)

• Etc

Unipass Technologies

Figure 14
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EXAMPLE

Thereliability of theDesign2 shouldbeequalor higherthanthereliability of Design

1. Investigate the possibility of using the less expensive material (Material 2) using

deterministic approach. Check the accuracy of the results using probabilistic analysis.

, ! ..... =

Example

• Select a material for design 2 that ensures equal or higher.reliability

than design 1 under the new loading condition

• Design 1: Load = P1, Material = Material 1

P1 P1 [] A1

• Design 2: Loads = P1" P2, Material = ?

P1- P1- P2 [] A2

Unipass Technologies

Figure 15
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EXAMPLE

Assuminga safety factor of 1.4 the deterministic analysis predicts a Safety Margin of

0.0 for Design 1 and a Safety Margin of 0.131 for Design 2 using the Material 2.

Analysis Results: Material 2 can be used for Design 2.

• Deterministic analysis strategy

• Assume a safety factor of 1.4 for both designs

• Identify the margin of safety for both designs

• Identify the safer design

• Deterministic analysis results

• Design 1: margin of safety = 140/(1.4"100) - 1 = 0

• Design 2: margin of safety = 95/(60"1.4) - 1 = 0.131

• Safer design: design 2 (0.131 > O)

• Sensitivity analysis results not available

Unipass Technologies

Figure 16

116



EXAMPLE

Assuming Material 2 for Design 2, probabilistic analysis predicts much higher failure

probability for design 2 compared with Design 1. This violates the design requirement.

Analysis Results: Material 2 cannot be used for Design 2.

Probabilistic analysis strategy

• Consider the variation of design parameters (P1 and P2)

• Defines limit-state function, g = fry(rn_n)"calculated stress (P, A),

i.E., Failure occurs when calculated stress > fty (min)

Probabilistic analysis results:

• Design 1: reliability = R 1= 0.99997

• Design 2: reliability = R 2= 0.99942

• Safer design: design 1 (RI> R 2)

• Sensitivity analysis results available

Unipass Technologies

Figure 17
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EXAMPLE

Design 2 is subjected to two random loads with 10% coefficient of variation. This

will result in a standard deviation of 10.77 kips for the resultant load spectrum of Design 2.

To ensure the same level of reliability for both designs, the number of standard deviation

away from mean of the applied load must be identical for both designs. This assumption will

result in a safety factor of 1.718 for Design 2. Using the new safety factor, the deterministic

approach will also achieve the same results obtained by the probabilistic method.

• Calculate number of standard deviations away from mean (SD1) for design 1

based on assumed safety factor (SF 1 = 1.4)

SD 1= (SFI*100-100)/10 _l '///_
= (1.4"100-100)/10 = 4 s_

1_ 140

• Use the same number of standard deviations (SD 2 = SD_), calibrate safety
factor for design 2 (SF2)

SF 2 = (60+ SD1"10.77)/60 _T ///_= (60+4'10.77)/60 = 1.718

• Calculate the reqtfired strength for design 2 based on the updated safety factor,

SF 2 (original required strength = 60* 1.4 = 84 ksi)

Required Strength = 84 * 1.718/1.4 = 103.08 (> 95, not acceptable)

I Same Safety Factors May Not Be Appropriate for All Designs I

Unipass Technologies

Figure 18
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EXAMPLE

Assuming the same level of reliability, safety factor is a highly nonlinear function of

load and strength uncertainties. This means that the safety factors must be calibrated for

structures that are subjected to multiple loads to ensure adequate reliability level.

_ .........Exampl:

Probabilistic technology
can identify the critical
areas that safety
factors must be
increased to meet

required reliability and
safety

Probabilistic technology
can reduce structural

weight by identifying

and reducing safety
factors where possible

it Safety Factor = Design Load/Mean Load

V L = Load Uncertainty

V s = Strength Uncertainty
Reliability = .9999

1

o K i i i I I i i i ! ._
0.1 0,2

Strength Uncertainty, Vs

Unipass Technologies

Figure 19
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LATEST DEVELOPMENT IN PROBABILISTIC SOFTWARE TOOLS

The following list includes the most recent available probabilistic software tools

UNIPASS, ProFit, and ProModeler by Unipass Technologies

NESSUS by NASA Glenn and SwRI

ProFEA by ARA

ANSYS PSD by ANSYS

PROBAN by Veritas

FEBREL by Boeing

Latest Development in Probabilistic Software Tools

Will Allow Companies To Maximize Their Business Success

• UNIPASS, ProFit, and ProModeler by Unipass Technologies

• NESSUS by NASA Glenn and SwRI

• ProFEA byARA

• ANSYS PSD byANSYS

• PROBAN byVeritas

• FEBREL by Boeing

• Etc

Unipass Technologies

Figure 20
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LATEST DEVELOPMENT IN PROBABILISTIC SOFTWARE TOOLS

The general-purpose UNified Probabilistic Assessment Software System,

UNIPASS TM, can be utilized independently, as a stand-alone software engine, and/or

integrated with deterministic software tools to perform complex probabilistic analyses. In the

analysis, UNIPASS TM provides the basis for modeling uncertainties, developing probabilistic

process models, computing probabilities, identifying most likely outcomes, providing

sensitivity data, identifying key drivers, analyzing risk, and performing sensitivity analysis,

while the deterministic software tools may be integrated to provide the computational

framework for constructing complex deterministic models.

To ensure predictive accuracy, UNIPASS TM provides multiple algorithms, which the

user can select. By comparing the results of several algorithms, a level of confidence in the

predictions can be achieved. Furthermore, UNIPASS TM, in addition to 11 gradient-based MPP

identification methods, also provides a robust simulation-based search algorithm that
identifies MPPs for discontinuous and/or non-differentiable limit-sate functions.

UNIPASS Probabilistic Engine Provides Unmatched

Capabilities for Performing Complex Probabilistic Analysis

• User friendly graphical user interface

• UNIX and Windows 95, 98, 2000, and NT operating systems

• 23 distribution types for modeling 4 classes of random variables including user-
defined distribution

• 59 mathematical functions for modeling any complex event

• Event model may be function of any variable or any previously defined function

• 3 analysis types including probability analysis, inverse probability analysis, and
CDF/PDF analysis

• 4 different problem types including component, serial system, paraUel system, and
general system

• Numerous probabilistic methods in 6 categories for performing probabilistic analysis
including FORM, SORM, SM, ISM, RSM, MVBM

• Generic and Customized Interfaces for easy integration with in-house and
commercial codes

• Interface with MSC/NASTRAN finite element code

Unipass Technologies

Figure 21
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LATEST DEVELOPMENT IN PROBABILISTIC SOFTWARE TOOLS

The probabilistic analysis begins by constructing process models and the probability

distribution models. In addition to physic-based models, analysts often seek to construct

models of processes, such as manufacturing processes, for which only some statistical data is

available, and to construct These process models and probability distribution models can be

constructed using our proprietary software tools ProModeler TM and ProFi TM, respectively,

utilizing available data. Using a general Bayesian framework, ProModeler TM constructs the

process models utilizing available data. This tool provides a framework for the analysis of

uncertainties and model assessment by a Bayesian Updating Rule. Utilizing available data,

ProFit TM identifies the best probability distribution model using a combination of the

maximum likelihood method, three goodness-of-fit tests, and probability paper approach.

The method of maximum likelihood involves taking as the estimate for each unknown

parameter the value that appears most probable on the basis of the given data. The goodness-

of-fit tests are objective techniques that provide a probabilistic framework in which it

evaluates the adequacy of the distribution function. Probability paper approach is more a

subjective method that determines whether or not the data contradict the assumed model

based on a visual examination. This concept can provide a great deal of useful information in

addition to an evaluation of the appropriateness of the chosen model.

:ii i

___: ProModeler Software

Provide Capabilities for Variable and Process Modeling

• ProFit engine identifies the best distribution type for a given data set

• Identifies best distribution for a given data set comparing 22 distribution types

• Performs 3 different goodness-of-fit tests

° Provides probability paper

• Estimates distribution parameters using method of moments and maximum
likelihood method

• ProModeler Provide several techniques for building the process model and

identifying patterns from given data using

• Last-square method, regression approach, and Bayesian updating

Unipass Technologies

Figure 22
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PROBABILISTIC SYSTEM DESIGN

Probabilistic system design holds many opportunities to improve the total design

process from concept to detailed design to service performance. Probabilistic design provides

a rational basis for the linking of all of the interactive elements of system performance in a

direct manner that accounts for the variability or uncertainties in all of the variables.

However, there are major issues and challenges that yet must be overcome. The goal today is

to provide an overview of the current state of probabilistic design while pointing the

achievable work yet to be done.

Probabilistic System Design:

Issues and Challenges

: T. A, Cruse

Private Consultant

Pagosa Springs, CO

Figure 1
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THREE MAIN MESSAGES

The reality today is the probabilistic methods are already finding their way into the

design process in various industries. The revolution in the design process is already

underway. The presentation will also address the message that probabilistic methods are not

yet ready to deploy to the design floor to support the certification of advanced, man-rated

systems. Finally, the presentation will address ideas on the integration of probabilistic

methods with some non-traditional methods (at least to those doing design).

Main messages

Probabilistic methods are being used todag to
design systems for industry

Probabilistic methods require further
development to certi_ system designs

_, Future design system developments require
integration of probabilistics and non-
traditional analysis methods

May 30, 2001 T.A. Cruse, Consultant
i
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PRESENTATION OUTLINE

Probabilistic methods are not just research. They have already been deployed to

industry to support product design as well as process engineering, with great savings in cost.

The joint AF/Navy JSF program has committed to probabilistic high cycle fatigue design

requirements as the required technology to assure product performance and reliability. The

presentation also includes reference to a study done by this consultant for the NASA Glenn

Research Center as part of the now-defunct NASA ISE program.

However, the basic tools and methods used in probabilistic design still require

significant improvements in order to adequately support the design process for advanced

aerospace systems. The key issues and challenges that remain included robustness and error

bounds for all algorithms, the ability to predict confidence (or assurance) bounds on the

predicted system outcome, and model verification and validation methods.

Presentation outline...
,@ .............................................

Where we are today
• Some industrial successes

Air Force probabilistic-HCF program

[] Non-deterministic, non-traditional methods
(NDNTM) for design study (NASA/GRC)

Issues and Challenges
[] Robustness and error bounds for models

Confidence/Assurance bounds for data/models

• Verification and Validation procedures

Conclusions and recommendations
,t_%.

May 30, 2001 T, A. Cruse, Consultant
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PREDICTIVE RELIABILITY ENGINEERING

Working with the Los Alamos National Laboratory, Delphi Automotive has deployed

the PREDICT system that uses a probabilistic network approach to support the performance-

based, reliability growth design process from concept to field deployment. Probabilistic

modeling of the manufacturing processes at Procter and Gamble, also using LANL

developed technologies, identifies processing improvements that achieve bottom-line

benefits. That effort has been so successful that P&G is now marketing the technology to

others. References are given to some of these keys, recent applications of technologies

developed at Los Alamos National Laboratory. The technologies were developed to support

the nation's weapons reliability requirements where analysis must substitute for full-scale

testing.

Anon., "Proctor & Gamble starts peddling a "top secret" manufacturing technology,"

Manufacturing News, Vol. 8, No. 6, pp. 1, 6-8, Friday, March 30, 2001.

Kerscher, W. J., Booker, J. M., Bement, T. R., and Meyer, M. A., "Characterizing

reliability in a product/process design assurance program," Los Alamos National Lab Report

LA-UR-97-4072, Proceedings of the International Symposium on Product Quality &

Integrity, Jan. 19-22, 1998, Anaheim, CA.

Predictive reliability engineering

Los Alamos National Lab has focused on
deploying reliability based design tools to
industry
[] Proctor & Gamble project simulates reliability of

manufacturing process to within 1% [Mfg News,
March 30, 2001]

[] Delphi Automotive uses PREDICT methodology for
total mechanical system design [LA-UR-97-4072]

Critical contributions focus on the integration
of disparate types of data and information

May 30, 2001 T.A. Cruse, Consultant _ 4

Figure 4

128



LANL PREDICT METHODOLOGY OVERVIEW

The PREDICT system has as its operating core the prediction of system performance

(e.g., reliability) from conceptual design through field deployment. While the application to

Delphi Automotive focused on reliability growth during the design and deployment process,

aerospace design typically starts with a "successful" design on paper that meets the reliability

goal but at a level of excessive weight, or other performance shortfall. The point is that

predictions are made and tracked throughout the design process. Further, the range of

uncertainty on the performance metric is identified and tracked along with its principal

drivers. The goal is to increase reliability while decreasing the uncertainty range on that

reliability. The PREDICT system tracks the metrics along with the drivers so that

development and test investments are made where they can have the greatest impact on

improved design.

As a normal part of the design process, the reliability may be adversely changed as

the result of new information or data. That new information is fed into the Bayesian network

to provide rigorous updates to the system performance. The critical technology to me in the

LANL effort is the ability to integrate disparate forms of design and experimental

information from expert opinion to test data.

LANL PREDICT methodology
/q

__ :J Tracking Reliability Through System Lifetime
\_: _/

L_

Concept Design

May 30, 2001

Decreasing I
uncertainty withl

_. changes/tests.J

-=!
Prototype Production Customer Use

T. A. Cruse,Consultant

Figure 5
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AF PROBABILISTIC HCF PROGRAM

The JSF turbine engine designs use integrally bladed rotors whose lightweight and

flexibility means that dynamic modes are fully coupled across and around the rotor. Such

dynamic coupling can result in "tuned absorber" dynamic response such that all energy feeds

into a small region resulting in rapid structural failure. Deterministic design methods have

been found to be incapable of controlling this phenomena and the commitment has been

made by industry to step up to a full probabilistic design that links to manufacturing

variability.

HCF design has been a major AF field failure problem for over two decades. Rotor

LCF has largely been controlled through the damage tolerance design approach but HCF

technology has lagged. The controlling design requirements for all engine structures is

defined by the Engine Structural Integrity Program (ENSIP) guidelines contained in Mil-Std-

1783A. That standard is now being updated to include probabilistics. The zero th level change

that has been accepted by industry is a probabilistic resonant frequency avoidance criteria.

The AF has joined with NASA to continue what had started as a NASA ISE program

to infuse some of the LANL PREDICT technology into the AF HCF program. In particular,

the effort is demonstrating how to elicit design and operating information from industry on

the sources of and nature of the variability in the aeromechanics drivers and structural

response for bladed rotor HCF failures.

AF is Committed to probabilistic
basis for HCF life prediction

.@ ........................... ,2 ...........

Requirement driven by integrally bladed
rotors that cannot meet reliability
requirements otherwise

HCF identified as the major structural
reliability problem in the field

Preliminary, zero th level probaNlistic design
requirements are being adopted

Joint NASA/AF/Industry effort to apply
portions of the LANL/PREDICT system to HCF
problem

T. A. Cruse, Consultant _ 6
m
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NASA/GRC ISE-FUNDED STUDY OF NDNTM FOR SYSTEMS DESIGN

This funded study was performed in CY 2000 and a final report is available through

the Program Manager, Dr. C. C. Chamis. The context for the study undertaken by this

consultant is the AF HCF program, the Consultant's experience and work in probabilistic

design, a comprehensive literature review, and a personal belief that NDNTMs are required

for the next generation space access vehicle system design. The study included a review of

NASA's design technology base, current design environment studies in industry, and

technology capabilities and efforts at a number of key small business or university sites.

The conclusion of the study is that we have no real current need for new probabilistic

methods but that we have many important tasks to complete in order to deploy non-

deterministic design into aerospace vehicle design practice. Another key conclusion reached

by this consultant is that the nation lacks the critical leadership necessary to achieve a truly

inter-operable, information based design environment such as envisioned by the NASA ISE

effort. At this time it appears that every major aerospace firm is working on its own vision

for such systems and these are not likely to work together.

NASA/GRC study on Non-deterministic,
Non-traditional Methods

NASA's Design Technology Base

IntelligentSynthesisEnvironment
NPSSDesignEnvironment

Current Technology

USAFProbabilisticsHCFProgram

ProbabilisticStructuralAnalysisMethods
PersonalDesignExpertise
NDNTMLiteratureReview

r

Current Design Environment Development

TheBoeingCompany
RockwellScienceCenter

TheHoneywellCorporation

_ratt& Whitney
GEAircraftandCort_orateR&D

May 30, 2001

Technology Tool & Environment Development

EngineousSo[twarelInc.
AppliedResearchAssociates,Inc.

SouthwestResearchInstitute

STITechnologies,Inc.

ImDectTechnologies,Inc.
UnipassSoftware.Inc,
WrightStateUniversity

LosAlamosNationalLaboratory

T. A. Cruse, Consultant

Figure 7
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NDNTM STUDY PUBLISHED KEY RECOMMENDATIONS

The conclusion of my NDNTM study for NASA was that the future space access

systems designs must integrate design information in innovative ways that include the

variability and uncertainty issues upon which probabilistic design methods focus. The design

environment is fundamentally driven by the need to integrate disparate forms of information

from data to judgment. The design environment also requires the ability to work with many

interoperable tools that might be generated by diverse sources and integrated at the desktop.

The study proposed an integrated non-deterministic design environment.

Principal recommendations

_Future, 3rd Gen system design will
integrate variability and uncertainty

, Design depends on integrating disparate
forms of information and analysis

, Approach requires a standard software
engineering environment with
interoperable tools, not packaged software

_Integrated non-deterministic design
environment was recommended

May 30, 2001 T.A. Cruse, Consultant _ 8
i
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INTEGRATED NDNTM DESIGN ENVIRONMENT CONCEPT

The focus in this graphic is on non-deterministic design using non-traditional

methods. The chart shows in blue ovals the technology areas for which details are proposed

in the NDNTM Final Report. Elements include intelligent interfaces, Bayesian networks,

fuzzy logic for data/information fusion, and other non-traditional technologies. However, the

central processing element of the NDNTM is mathematically rigorous probabilistic methods.

Such algorithms as fuzzy logic were not found to be suitable or appropriate for the core

analysis algorithms.

Integrated, non-deterministic

design environment needed

Knowledge Base
Test Data

Manufacturing Data

Acceptance Data

Expert Judgement

Probabilistic Structural Analysis

Probabilistic Optimization

Generator

May 30, 2001 T, A, Cruse, Consutta_- _ 9
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SIGNIFICANT CHALLENGES REMAIN

The current technologies used in probabilistic design appear to meet the design

environment requirements in terms of basic capabilities. However, these methods lack the

necessary robustness to be deployed to the design floor. Fast probability methods fail to

converge for certain problem formulations, the output predictions have unstated or unknown

accuracy, and the methods still require that the users be probabilistic experts.

The future design environment for advanced aerospace systems will involve many

types of data and information to be integrated into the prediction system. The effective

approach is to more fully utilize expert systems and their knowledge bases to provide

interfaces to the tools, to assist in data preparation, and to provide "error traps" for complex

modeling. Reliability networks are needed to represent the overall system being designed, to

provide "what-if" modeling capability, to provide weighting functions for decisions on

development investments, and to rigorously support reliability updating as new information

is obtained. A critical need is to have the ability to merge soft data (engineering judgment)

along with crisp data (e.g., experimental data) in rational ways that minimizes bias while

fully retaining evaluative links to the data sources.

Significant challenges remain

_ Probabilistic tools are not yet robust
• Methods sometimes fail to converge

Modeling accuracy levels are not known

Applications require expert users

Integration with non-traditional methods is
required

Reliability networks with updating

Integration of soft and crisp data

Expert systems and knowledge bases

May 30, 2001 T, A. Cruse, Consultant 10

Figure 10

134



FAST PROBABILITY ALGORITHM ROBUSTNESS TESTED

As part of the AF HCF program, the Consultant applied some of the standard fast

probability integrations, as provided by Southwest Research Institute, to a simple 1D

oscillator design problem posed by GE Aircraft Engines (GEAE). The 1D model was sharply

peaked in the form of the shown limit state. A mathematically equivalent form of the same

limit state can be derived that is essentially an inverse of the shown state. That equivalent

form did not have the indicated problems in computing predicted reliabilities.

The GEAE problem had seven random design variables. They derived eight design

cases that had differing nominal conditions for each of the seven variables. Using a design of

experiments (DOE) approach, GEAE determined values of the design variables for each

design case that had low probabilities of failure (third column). The Monte Carlo method was

used with different numbers of simulations (second column) to make what were taken to be

converged reliability predictions. The remaining three columns show the Advanced Mean

Value Plus (with iterations), First Order Reliability Method, and Second Order Reliability

Method predictions. In the form of the peaked response model of the 1D system, each of the

methods failed for one or more of the DOE cases. The problems are not associated with the

so-called multiple-limit state problem for fast methods. Rather, they seem to be purely

numerical problems associated with a poorly resolved limit state.

<_)L_MSFI
_.looj L

1 17.

II °--NI'][mN12
DNom J _, P Allow )

-I=01

•Strongly-peaked response function form for limit state

•The limit state form resulted in poorer numerical behavior

•Problem is similar to what occurs in numerical optimization

algorithms

DOE Case N_sims Me (TAC);I AMv+ FORM ' .........sORM

........9 .... 606K .... 0.00017! 0.00016 0.0000i2:(_2(3 ........

4 200K 0.007631 0.00764 _ 10A-32 ~ 10/'-42

6 600K 0.00059 0.00059! 0.0000 0.0000

8 200K 010:i440 0.9998-0" 21_25 .........................().0000

10 600K 0.00369 0.00356 0.00309 0.0037

12 20()'K..............................6:63646 ........0['02940-............ o.9999

.................14........... 200K ..................0[02448 0.02335i o.0226o ...........010239

16 _200K 0.08477; 0.08210! 016#94-() 016834i

May 30, 2001 T.A. Cruse, Consultant _ 11
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SMART ENVIRONMENTS NEEDED

Some of the conclusions reached by the Consultant regarding the current probability

integration algorithms are indicated. The fact is that fast methods are really faster than Monte
Carlo. There is little doubt to this observer that fast methods will be needed for future

aerospace systems design. However, their deployment will not be accepted until the

shortcomings are rigorously addressed. Research sponsors and program managers must link

the development of future tools to requirements that address these needs.

Monte Carlo methods will also be required. While typically taken to be "truth" there

are significant capabilities that these methods must also contain in order to be used in this

future design environment. The needed capabilities include the ability to capture the so-

called probabilistic sensitivity factors that are critical to the design process. Such factors are

used to narrow the problem space, to allocate information resources, and to compute
confidence intervals. Monte Carlo methods must also have their own automated simulation

error controls that adaptively adjust the simulation numbers to the outcome probability of
failure results.

All methods used must make modeling error bound estimates for each problem. The

error bounds are required to support system certification and to compute confidence interval
estimates.

All probability integration algorithms
require smart operating environments

"Fast" probaNlity algorithms are faster,
• Robust convergence is required

[] Algorithm error bound estimates needed

, "Erroneous use" traps needed

Monte Carlo algorithms working with
response surface models are much more
robust, but...
. Sensitivity factors needed near failure condition

(NPP)

• Automated "error" convergence control required

_AII methods require known modeling errors

May 30, 2001 T.A. Cruse, Consultant 12
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CONFIDENCE INTERVALS ARE REQUIRED

Classical statistical confidence intervals are mathematically linked to the quantity of

experimental data. As such, statistical confidence intervals are not appropriate to the future

NDNTM design environment. The fact is that aerospace vehicle design, as opposed to

electronic device manufacturing, cannot be evaluated by replicated system failure testing!

Yet, confidence intervals are still required - we need to be able to answer the question of

"how good is our estimate?"

Bayesian (belief) networks are the effective mathematical means for computing

engineering confidence intervals (as opposed to statistical confidence intervals). Some would
call these intervals assurance intervals to make the distinction clearer but the word

"confidence" appears to be the most meaningful to engineers. Bayesian networks allow many

kinds of answers to the indicated questions to be integrated in estimating the range of
outcomes.

Certainly, the key issues addressed in the Verification and Validation process for

analysis methods also contribute to making such confidence or assurance estimates.

The next big issue is calculating
"confidence" or "assurance"

Statisticians have standard tools for dealing with
finite data, e.g., confidence intervals

. Statistical confidence intervals typically drive design data
requirements

, Statistical confidence intervals define data quality

Design must analytically account for the "quality" of
data (information) and models

, How "confident" are you about your data (information)?

, How "confident" are you about your data model?

, How "confident" are you about the physical model?

Assurance is a by-product of a process ap_proach to
"verification" and "validation"

May 30, 2001 T.A. Cruse, Consultant _ 13
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DISTRIBUTIONS HAVE DISTRIBUTIONS

As a simple example, [ illustrate the effect of uncertainty on the seven input

distributions used for the GEAE 1D oscillator test problem. Again, I acknowledge the

support of SwRI through the use of their Nessus code to make these calculations. The

algorithm is base on outer "do loops" of Monte Carlo simulations that account for the

variability in the input variables.

In each case shown, each random design variable's distribution parameters, the mean

and the standard deviation, was assumed to have a uniform distribution. The "width" of the

uncertainty, or its interval, was defined by the coefficient of variation of that parameter. Two

cases were taken where the mean and standard deviation had intervals of 5%, 10%

respectively, and 0.5%, 1.0% respectively. The results are stated in terms of the two-sided

(upper and lower bounds) for the predicted probability of failure of 0.0144. That is, how

large (or small) might the probability of failure be if we don't have perfect information on the

input variables? The simulations do not include the effect of modeling errors!

Distributions on distributions
-'/97

Input data models are
themselves uncertain

GEAE HCF Problem

[] MC (200K): Pf = 0.0144

Uncertainties assumed
on distributional

parameters
[] Uniform for g,

• COV for F = 5% [0,5%]

[] COY for _ = 10% [1%]

MC simulation of
simulation results:

• Nessus/Confidence

90% LB: Pf = 0,0000044

- 90% UB:Pf=0.425

[90% LB: Pf = 0.0081]

[90% UB: Pr = 0.0238]

Still must account for

modeling errors

May 30, 2001 T. A. Cruse, Consultant 14
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VERIFICATION AND VALIDATION

Design analysis methods themselves have uncertainties. Verification addresses

whether or not the computational methods that are used accurately represent the assumed

model. Validation addresses whether or not the model accurately represents the underlying

physics that is being modeled. Both steps are critical.

System certification addresses both the process and the outcome. An example is the

FAA certification of the design of critical rotating parts in commercial aircraft turbine

engines. The certification process requires a complete verification and validation of the tools

used - deterministic tools today - to certify the safe life predictions for these critical engine

components.

I am certain that such verification and validation requirements will exist for the

NASA space access program. Such methods are now being developed in detail for the

national nuclear weapons certification program. The AIAA has published a V&V guide for

CFD while the ASME has just approved a code committee action for finite element

programs. No such effort currently exists for probabilistic methods.

Verification and Validation methods

are required for new system design
f_

GAll system behaviors have uncertainties
[] Verification addresses coding of models

m Validation addresses accuracy of models

Certification is based both on the process
and the outcome

System level V&V will be required for 3rd
Generation RLV certification

_Sandia/DOE, AIAA (CFD), ASME (FEM)
V&V efforts ongoing and can be used

May 30, 2001 T. A. Cruse, Consultant 15
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CONCLUSIONS

Probabilistic design is not some future thing. It is here todav. It is the right approach

to some of the most critical design issues of risk-based decision making, cost reduction, and

testing. However, the design environment needs real work to be done in order to meet the

needs of certifying complex aerospace systems. Finally, system certification must include

work on the verification and validation of the probabilistic methods that we will use. NASA

Program Managers are in a position to address many of these needs in their future research

procurements.

Conclusions and recommendations

Probabilistic design is here today
• Rational process to support risk based requirements

[] Rational process to evaluate cost reduction vs. risk trades

[] Rational process to define testing requirements

Probabilistic design environment needs work
[] Integration of disparate information & models needed

• Robustness and accuracy issues must be resolved

, Smart design environment needed

Verification and Validation (V&V) effort needed
[] Quantify the role of modeling uncertainties

[] Quantify the effect of uncertainties on predicted
performance

May 30, 2001 T. A. Cruse, Consultant 16
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Figure 1

Motivation

• Moving from deterministic design to robust/probabilistic design methods
amounts to an admission that uncertainty exists and has a significant impact

on system performance

• Want to analytically answer the questions:
How much design margin is really necessa D ?

How do design parameters impact the uncertainty in performance?

What can be done to reduce this impact?

• Obstacles to implementation:
Organizational inertia

Lack of probabilistic analysis tool to bridge the gap between deterministic and

probabilistic methods

Computational Costs, if not approached intelligently

Probabilistic Design ]

Robust Design ]

A
_zoegia_stitute of T_hno_ogy

A*l_la, _A 30_32-0150 2

w_o,_ol._avec_._u

Figure 2
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The Design Process Paradigm Shift

• A paradigm shift is underway that attempts

to change the way complex systems are being

designed t"_

• Emphasis has shifted from design for

performance at any cost to design for =

affordability _

• There is a need for a multi-disciplinary _ _

approach to the problem based on more _ _ s s,_

sophisticated higher fidelity tools -_ _, _"

• Forecasting with a high probability of
success the economic viability of the system

in the early phases of design appears to be the

key to success

• Due to the life cycle implications of this

approach a need exists to create an
environment that virtually designs, tests,

certifies, manufactures, and operates the

system, while accounting for design

ambiguity, uncertainty and risk

Figure 3

Affordability- Making the Right Decisions Early

100 %

cquis#ion rimeline
Pie-milestone 0 Phase O Phase I I Phase II Phase III

Determination of Concept Program Definition I Engineering & production,

Mission Need and Exploration al_d Risk Manufacturing Deployment, and
Oeficiencies Reduction Development Operation Suooort

"r_rnitted

t TodayFuture

Rnguiremems Conceptual Preliminary

Definition Design Design

Design Timeline

hr. D_mi*r_t_av_ts
6eorgJa _nstilute of Technology
Atl_t_, 6A 30332-9150
_ww,_dt._*ech edu

Detail Design + Manufacturing

Figure 4
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Definition of Affordability

Affordabilitv: The ratio of benefits provided or gained from the system over the cost of achieving those benefits
In a probabilistic. Modeling & Simulation approach, Risk is inherent in these estimates

Weapon System Effectiveness ...._ GDF_ . . .
S & TAffordability =

Investment to Achieve This Effectiveness

Weapon System Effectiveness- Aircraft Example

• Acqu[sllion cost

•Opemaon _t

• Maintenenoo cost

• Aircraft replace_n

'°'%:_"',:7""

Availab'ility ]Safety

k3(Readiness)+l%(Dependabi]ity) "" " ""

., "::°'_'e_'_'gm

/ ,_,_,Co,,

Figure 5

Roadmap to Affordability

....... Robust Design Simulation ...............................................................................

:..'" Subject to ''"_ Decision Making

Design & Environmental _ ! (MADM)

Technology
Infusion

Physics-

Based

Modeling

Activity and
Process-

Based

Synthesis _ _ Operational& Sizing Simulation Environment

Economic

Life-Cycle

Analysis

Modeling Economic & _ Impact of New

Discipline _ I Technologies -
Uncertainties _[ Performance &

...... ................ _1 Sche=duleR k,_o_. ..-"

Objectives:
• Attribute 1

(e.g. Cost)

• Attribute 2

(e.g. Performance)
• Attribute 3

•.°.

Customer
Satisfaction

Figure 6
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Synthesis, A Critical Need-
Creation of a Physics-Based M&S Environment

\\
\

Integrated Routines

Table Lookup

I i T erfo?mance_ I
• . . (First-Order Methods)

\ ApproxlmatlngFuncti_ :Is) J

_)irect Coupling of Analyses i

Increasing

Complexity

hr. him rrl Mavris
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Atl_ta G_ 30332_3150

Figure 7

Synthesis Toolkit Fidelity

/" / _" _ "Management

...... _ be substituted for

Conceptual Tools

(_) Response _
Surface can be _

used
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Figure 8
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Response Surface Methodology (RSM)

• RSM is a multivariate regression technique developed to model the

response of a complex system using a simplified equation

• Regression data is obtained intelligently through the Design of

Experiments (DOE) techniques

• RSM is based on the design of experiments methodology which gives

the maximum power for a given amount of experimental effort

• Typically, the response is modeled using a second-order quadratic

equation of the form:

k k k-1 k

R=bo + Ebixi + Ebii x2 + E Ebijxixj

i=1 i=l i=l j=i+l

Where,

b i are regression coefficients for the first degree terms
bll are coefficients for the pure quadratic terms
bij are the coefficients for the cross-product terms

R

_d
Georgia Institute of Te_hno_aty
AtJ_ta GA 30332~0150

w_._d ._crtech edu 9

Figure 9

Design of Experiments

Purpose: Minimize number of experiments required for desired level of resolution !

Design of

Experiments
Full Factorial

Central

Composite
Box-Behnken

D - Optimal

Design

For 7

Variables

2,187

143

62

36

For 12

Variables

531,441

4,121

Equation

3 n

2n+2n+l

2,187

91 (n+1)(n+2)/2

Facto_

Run X1 X2 X3

1 -1 -1 -1

2 +1 -1 -1

Response

Yl

Y_

3 -1 +1 -1

4 +1 +1 -1

5 -1 -1 +I

6 +1 -1 +1

7 -1 +1 +1

8 +1 +1 +1

Y3

Y4

Ys

Y6

Y7

Y8
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Parametric Description of a Wing Planform

Other Design Variables

for the Aerodynamic Screening

xwmg
t/c at root

t/c at tip
Nacelle Scaling

Horizontal Tail Area

CL Design
Root Airfoil (loc. max. thickn.)
Tip Airfoil (loc. max. thickn.)

Nacelle X-location

Wing Reference Area
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ASDL Probabilistic Method

CDF

Concept Space

Criterion I IJ
or Requirement 1

Technology
_,-,

) !_--(_.) Space Requ rements

Dynamic

Contour

Plots

Figure 13

Additive Creation of the Overall Environment

f
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H <-

TopLevel _uiremertts Concepts (17_s_gn Var|aNes}

<-._.- .--).@--,_:[ =_*

Assumption: Interactions among the input variables exist only within each group

(Or regroup the inputs to eliminate interaction across subspaces)
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Des)g_Eeon_mio Veri_lcl_s
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Method I

Sophisticated

Analysis Code

Method H

Sophisticated

Analysis Code

Method Ht

Sophiatica ted

Analysis Code

Georgia Institute ef Yeehnology
Atlanta 6A 30332-0150
_l_w._d ._at_h.edu

Options for Probabilistic Design

0% /

Metric

_0%

Metric

/
0%

Metric

Figure 15

xn Yl Y_
Y_

X6 \ /

%/

IALCCA

X 2

X 1

Fast Probability Integration (FPI)

• FPI manages program execution while
handling up to 100 deterministic (x_) or
probabilistic (y_)variables, with capability for
expansion

• Establishes desig_ feasibility

• Identification of most critical constraints

• Creates probabilistic sensitivity derivatives
and CDFs for each objective & constraint

• Assessment of new technologies impact
deterministically or probabilistically

• Probabilistic solutions for a set of design
variables subject to uncertainty

• Identification of feasible and/or robust solutions, by assigning random
distributions to each design variable, within the range of applicability, and
allowing for operational and manufacturing uncertainty

_rgio Institute of T_hnolo9_
Atlmta, _A 30_3Z-0150
w_._dl,rlatech,edu 16

Figure 16
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Technical Feasibility vs. Economic Viability

Feasible and
Viable Solution

.i

e_

e_

d:

i i
I

/

/
Desired /Solution

/
/ , I\

Target

Non-Feasible,
Non-Viable Solution

Objective or Constraint /

/

/

\

Baseline
Mean

\
Baseline

\
\

\

Objective
Constraint

3r. DimiCrJMavri_
G_rg_a Institut_ af T_hno[o_y
Atlanta. GA 30332+0150
www._dl,_at_h.edu

Figure 17

Addressing Technology Benefits,
Penalties and Confidence

1. Create filnctiona]

relafionsbipsbetween _ = f(L/D_, L/DTo, CLmax, Wwing, SFC, MMH/FH, . .1
Objectives/Constraints

=dt_ologym_¢_ _ = f(L/D_oa_e, L/DTo, CLro_x, Wwl.g, SFC, MMI-I/FI-I .... )

benefitsandpenalties (StepC'hange +10% +5% +7% -3% +5% -5%
through metric "k-factors" in Mean)

===,o /L J....

Dr. Otmttrl _a_l_ ff_
_eovgia I_*itute of T_hno_off/
Atl_ta GA 3033_-0150
_ww._nll_atech.edu 18 _

Figure 18
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New Constraint CDFs through Technology Infusion

Technologies have the affect of shifting the response distribution such

that an acceptable confidence in meeting the constraint or objective is
obtained

3 !

Dr,DimlY1M_vr_s
GcDrgiaInstituteof T_hnology
Atl_t GA _0S32-0150
www,_l._at_h,edu

Figure 19

JPDM- Mapping the Solutions

Three alternative

solution concepts, with
probability bands
growth and technology

uncertainty

Dr _im_tri Ma_l_
Ge_rgio _t_tute of Technology
A_l_ta, GA 30332-0150
w_.e_dl._teeh.edu

Criterion 1
or Requirement 1

Figure 20
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Technology Identification Evaluation Selection

,_ M artagemeal t Level of Confidence:

* • • and IPTs RSE or direct rink
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Customer ._

Reqmrement

T_xgets "

i'
Customer

Requirements.

Budget, V_

Schedule (EIS)

Morplmlogical Matrix

Alternative and Design Sp_.rt

Drl D_mttrl _a_

Georgia In_ti_*e of T_hnolOgy
Att_ta GA 30332-0150

w_._dl,_a*ech.edu
21

Figure 21
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EXAMPLE APPLICATION

The TIES method developed a few years ago in response to some very aggressive

vehicle concepts that could not meet future performance or economic objects, especially with

present day technologies or geometric perturbations. New technology infusion was the only

option. Yet, the cost conscious industry was very concerned with investment cost and risk

associated with developing and infusing new technologies that have a great deal of

uncertainty. Thus, a means to quantify the impact in terms of performance, cost, and risk in

the early phases of design was needed.

Hence, the Technology Identification, Evaluation, and Selection method was created.

Example Application

Aggressive economic and performance objectives of future

concepts likely cannot be meet with present day technologies

A "focus on the bottom line" has forced many aerospace

companies to dismiss new, innovative, and revolutionary

designs due to the potential risk of profitability loss

Yet, if a technology can be shown to improve a system at low

risk, it may buy it's way onto the aircraft

A comprehensive and structured process, applicable to any

system, was needed to quantify and forecast the impact of

emerging technologies while accounting for technological

uncertainty. This method is

TIES
Technology Identification, Evaluation, and Selection

22

Dr. bimitrl _vris

Georgia Institute of Technology
Atlanta GA 30332-O150

www.asd .$atech.edu

Figure 22
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Problem Definition

Societal Need:

Desire for a next generation supersonic aircraft
Increased commercial traffic gTowth
Increased comfort, safety, and affordability

Potential Concept Class:
High Speed Civil Transport

Concorde class derivative )

Dr. Dimltvi MGvvi_
6_r_ia Zn_ti*ut_ of T_hnology
A*l_t_, GA 30332-0150
_w._dE,_teeh,edu

TechtticaL{

fiteria ]

EcoaolNc

Criteria

Parameter

Approach Speexl t V_

FAR 36 Stage llI Flyowr Noise (YON

L_ndi ng "F_eld Le_tgth {Landing FL-_

FAR 36 Stage 11i Sideline Noise SLNI

Takeoff Field Length ITOFL)

Takeoff Gross Weight (TOGW

Edy()tlolrl_cs

Acquisition Price (Acq $l

Research Development, TesEirag, and
Evalaadou Costs RDT&Ei

Average Reqtlil_d Yield per Revenue

Passenger Mi!e ($tRPM)

Total AirpImle Relaled Operating Costs
(TAROCI

Direct ODeratiug COSt plus ][_'tterest t DOC_,I

Design Requirements:
Through QFD and brainstorming
exercises, the customer requirements
were mapped to quantifiable
engineering parameters

Target/
Cons,'waint J E+nits

<_ 155 lets

g 106 EPNLdB

ff 11,000 fl

_< 103 EPN'tAB

< 11,000 fl

.-q-.l,(Kg),000 lbs
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DEFINE CONCEPT SPACE

With the requirements defined, a potential class of vehicles must be defined. A

structured means of doing so is with a Morphological Matrix. The morphological matrix is

nothing more than a decomposition of all possible contributing elements of the system. It is a

means to brainstorm and think out of the box for potential solutions to the problem.

For example, the project manager could bring together all of his experts and

decompose the system. Do we want a wing and tail vehicle? Or a wing and canard? And so

on. If you do this for each element of the system, then you have effectively defined the

alternative concept space which may have mission parameters, technologies, and so on.

Once this matrix is sufficiently defined, one must establish a baseline to continue on

with the TIES method. You do this by selecting one element from each row like the circled

items, usually present day capabilities. This is your baseline that you will do all deviations

on.

Next, that system is further decomposed into geometric and propulsive parameters

that will define the design space to be investigated for feasibility.

@

N
)r. Dimltri /¢kwNs

Georgia Institute of Technology
Atlanta GA 30332-0150

Define Concept Space:

Alternatives Space

Space of Alternatives

- Began with a Concorde-class aircraft and modified based on market studies

- Decomposed vehicle class into system characteristics and characteristic
alternatives to define the component alternatives and potential technologies
through a Morphological Matrix

- Baseline configuration (circled) established from the characteristic alternatives
representative of present day capabilities

- Mission defined based on market requirements

ltematives

Vehicle Class vo_zlo
Fuselage

Pilot Visibifity

Range (nmi)

passengers

Maeh Number

Type

Materials

Combustor

Nozzle

Low Speed

High Speed

Materials

r_ Process

3 t 4
Wing & Canard Wing,f,ann_Tail& Wing

Cylindrical _el_ R_-@ Oval

Synthetic Visiot _0h ettt 9n'_M ConventionalNn¢_Drnnn &

6O0O 65OO *

2_0 2.7

"'-'_" Mid Tandem
Turbine Bypass Fan Flade

C--_hve'fifion_'_ Hitd, T Comn

_fz_nventlo_ - RQL - LPP
, _ b Internal , . Mixer Ejector

!Flow Alteration ! Mixed Ejector Acoustic Liner

oB_llfionFl_l__'_ FlanqC°nventi°nal_Yqlnt_ [ CC

"NLFC I Active Control I-ILFC

_n,npn_ite

_,_all, I Sfif,hnedSpanwiseI M°n°c°que _i_,b_Nti_ned •

24 ,_ C

Figure 24
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DEFINE CONCEPT SPACE: DESIGN SPACE

With the requirements defined, a potential class of vehicles must be defined. A

structured means of doing so is with a Morphological Matrix. The morphological matrix is

nothing more than a decomposition of all possible contributing elements of the system. It is a

means to brainstorm and think out of the box for potential solutions to the problem.

For example, the project manager could bring together all of his experts and

decompose the system. Do we want a wing and tail vehicle? Or a wing and canard? And so

on. If you do this for each element of the system, then you have effectively defined the

alternative concept space which may have mission parameters, technologies, and so on.

Once this matrix is sufficiently defined, one must establish a baseline to continue on

with the TIES method. You do this by selecting one element from each row like the circled

items, usually present day capabilities. This is your baseline that you will do all deviations
on.

Next, that system is further decomposed into geometric and propulsive parameters

that will define the design space to be investigated for feasibility.

Define Concept Space:

Design Space

Design Space
- Design space was defined with geometric and

propulsive variables from a decomposition of baseline

- Ranges established to capture as many configurations as

possible, from an arrow to a double-delta and push the

state-of-the-art in propulsion capabilities

- Initial feasibility is sought within this space

Variable Minimum Maximum Units Description

SW 7500 9000 ft 2 Wing area

TWR 0.29 0.33 Thrust-to-weight ratio _
TIT 3000 3400 °R Turbine Inlet Temperature

FPR 3.5 4.5 Fan Pressure Ratio

OPR 18 21 Overall Pressure Ratio .._

CLdes 0.08 0.12 Design lift coefficient

X2 1.54 1.69 LE kink x-location * _X3 2.1 2.36 - LE tip x-location*

X4 2.4 2.58 TE tip x-location*

X5 2.19 2.37 TE kink x-location* ._

X6 2.18 2.5 TE root x-location*

Y2 0.44 058 LE kink y-location* _t/croot 3 5 % Wing root t/c ratio

t/ctip 2 4 % Wing tip t/c ratio

SHref 400 700 ft 2 Horizontal Tail area -_ _

SVref 350 550 ft 2 Vertical Tail area

by wing semi-span _Variables Nondimensionalized

Dr. Dimitri _vri_
GeorgiaInstitute of Technology
Atlanta GA 30332-O150
www.asdl.,_ateeh.edu

X4

25 ._-_L

Figure 25
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MODELING AND SIMULATION: VEHICLE MODELING

Once the definition of your design space is established, you need an environment that

will model the vehicle and allow you to see how the customer requirements are influenced by

the design space. Typically, one uses a sizing and synthesis tool. Yet, standard tools must be

enhanced for non-conventional configurations like an HSCT. This is due to the fact that most

tools are based on historical data and must be enhanced with higher fidelity analysis tools to

give reasonable results. In this example, the aerodynamics internal to the sizing tool were

replaced with higher fidelity aerodynamic metamodels which would capture the entire design

space under consideration.

This then creates an HSCT specific, physics-based modeling and simulation tool and

you are ready to investigate your design space.

Modeling and Simulation:
Vehicle Modeling

M&S environment:

• Relates responses to inputs via a physics-based
M&S environment

• Metamodels are employed to facilitate the use of

higher-fidelity analysis for unconventional

configurations

Variables & Distributions

or

Design Tech.

Response Data

Response =f (design variables), or

=f (technology "k" factors)

Dr. Ditnitri /_lvris
Georgia Institute of Technology
Atlanta I GA 30332-0150

www,asol._atech.edu

ALCCA (Aircra_ Li(e-CI_cle Cost Anal_sis ): Developed by

NASA-Ames and enhanced by ASDL: calculates life-cycIe costs

and airline economics for transport aircraft.

FLOPS (Flieht Ontimlzation System): A NASA-Langley

vehicle syntt_esis and sizing code, well-suited for the conceptual

and preliminary design of subsonic transport aircraft.

'l

Figure 26
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INVESTIGATE DESIGN SPACE: SYSTEM METRIC SENSITIVITIES VIA

PREDICTION PROFILES

The RSEs can be visualized within the JMP statistical package with the prediction

profile feature shown here. As a side note, system metrics are synonymous with customer

requirements.

I want to point out the key info here in the prediction profile. First of all, the metrics

are listed on the left and the design variables on the bottom in a non-dimensional form where

-1 is the minimum and +1 is the maximum. The redline, or hairline, corresponds to the

current value of the design variable settings. And the metric values that result from the

current design variables is shown in green. As you move the hairline or change the design

variable value, the metrics automatically update.

You can see the influence of each variable on the metrics by the magnitude and

direction of the slope. For example, looking at thickness to chord at the tip we can see that as

we increase the thickness, the TOGW also increases.

You can also optimize your design variable settings with the desirability feature. You

can place the constraint values or the direction that you want a metric and then determine the

optimal settings of the design variables. I have shown here the design variable non-

dimensional values that correspond to a maximum desirability.

You can also immediately identify the upper and lower bounds of the design space,

but you are not sure how close the space is to either value. Is most of the space near the lower

bound or the upper bound? To do so, one simply extract the RSEs that are behind the

prediction profile and execute a Monte Carlo simulation on those equation with the design

variables allowed to vary anywhere within the defined ranges.

Metric Upper/Lower bounds of

,DGFL _l_ E&' I

_.81 1
Vapp _7

"_._ ._.

i_7.71 i
FON lo_.o ]

117_1 1

SLN _ti
_oB,s .t----C----

;tRiM o,2oa] [

esirability o ";-7,,'7"7"7

.0.24-

Design

Variables

the design space

•[.:._.:....:..:.:-.
-0.5

Hairlines move and update

respollSes ill real-tit'fie

" iZ __
i I • -

:' il

_. bimii'ei Ma_is
6_rgia In.irate of Technolo_
A*lml a, 6A 30_32-0t50

Investigate Design Space:
System Metric Sensitivities via Prediction Profiles

_either "[" or ,[, or no inflaence_

The larger the slope, the greater the influence

--

---- -.,--.--_1_-,--_- -- _ b--- --- .------_
I

_h!_,

_ i"7-:i ...........: :.............:....777"" "7""2 .....:............1 _ ........................... :

/
"-1" rain value of "Y2" //_%__%0.63" currertt value of "Y2" Desirability is an

"1" max value of"Y2" Opthnizafion technique

All are in a non-dimensional space

Figure 27
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HSCT FEASIBILITY ASSESSMENT: DESIGN SPACE REPRESENTATION

A result of examining the design space is a cumulative distribution representation of

you metrics as a function of design variables. Let me explain the information that you get

from doing this.

First, you can see the bounds of the design space and how much and or how close the

space is to your metric constraints.

Second, you can readilv identify the technical feasibility of the design space by

looking to see how much of the space is on the feasible side of the constraint target and then

read off the Probability value. For example, 4.6% of the space can satisfy the TOFL

requirement.

Third, if you look at the metric value at 0 probability, that value is the best that you

can EVER achieve with the design space you've defined.

And finally, and most important, you can see which constraints are killing you and

are the "show-stoppers" for the program. In this case, none of the space can satisfy the

sideline noise AND the space is very far away from the target. Hence, some significant

improvements are going to be needed to obtain a feasible solution.

So, what can you do?

Important Info:

•Bounding of

design space
based on ,_
uniform design
variable

distributions

,System

feasibility easily
identified

• At the P=0%,
the

corresponding

design is the
"best" that can

every be
achieved with

design space
considered

• Concept "show-

stoppers" rapidly
identified

DVl Dimitri _vris

Georgia Institute of Technology
Atlanta. GA 303324)150

www.asdl.,qatech.edu
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TECHNOLOGY IDENTIFICATION

Based on the fact that technologies are needed to improve the system feasibility, 11

applicable technologies and their associated TRLs were identified either through a literature

search or provided from various entities. As you can see, most of the technologies considered

are at a TRL of 3. And if you recall from the previous slide, that implies that there is a lot of

uncertainty and the anticipated impact has a low chance of being achieved

Technology Identification

® 11 technologies were established fi'om the needed improvements identified in the

system feasibility investigation, in addition to enabling technologies

o Associated Technology Readiness Levels (TRLs) were established from a

comparison of the current research activities to the TRL descriptions

• Technology Compatibility rules were determined from brainstorming sessions

(Name) Technology
(T 1) Composite Wing

(T2) Composite Fuselage

(T3) Circulation Control

(T4) Hybrid Laminar Flow Control

_(T5) Environmental Engines

(T6) Advanced Flight Deck Systems

(T7) Advanced Propulsion Materials

(T8) Integrally Stiffened Aluminum Wing
Structure

(T9) Smart Wing Structures
(T10) Active Flow Control

_(T11) Acoustic Control

)r. Dimitrl M_lvris
_eorgia Institute of Technology
4tlanta GA 30332-0150

• ww.t_sd ._ate.ch,edu

TRL Purpose
3 Wing weight reduction
3 Fuselage weight reduction

4 Increased low speed performance

3 Cruise drag reduction

3 _fuel burn, and emissions
4 Synthetic vision removes fuselage nose droop

weight penalty

3 High temp. materials, reduced engine weight, lower
fuel burn

4 Wing weight and part complexity reduction

3 Reduced flutter and wing weight

33 _on

29

Figure 29
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TECHNOLOGY IDENTIFI(;ATION: TECHNOLOGY PRESENTATION

THROUGH MAPPING TO "K" FACTORS

Unfortunately, advanced technologies are difficult to assess in an integrated design

environment. As mentioned earlier, synthesis/sizing tools are typically based on regressed

historical data, which limits or removes the applicability to revolutionary concepts or

technologies. However, the impact of generic technologies can be quantitatively assessed

with technology impact factors, denoted as "k" factors herein, in the early phases of design.

These "k" factors modify disciplinary technical metrics, such as specific fuel consumption or

cruise drag that result from a sizing tool. The modification is essentially an incremental

change in the technical metric, either enhancement or degradation. In effect, the "k" factors

simulate the discontinuity in benefits and/or penalties associated with new technologies.

This assessment is performed in the Technology Impact Forecasting environment.

Technology Identification:

Technology Representation through Mapping to "k'" Factors

Formulation in terms of elementary variables does not lend itself

to disciplinary or multidisciplinary technology assessment

L/D

Conventional

models break down

? %A L/D

The assessment of new technologies must be addressed through

the disciplinary metrics (or technology "k" factors) since a

mathematical formulation is not yet available

constraints�objectives = f(k_L]Osu b, k_L/Dsup,k_ CLm_, k_T1, k_SFCsu b .... )

D_. Dimitri Mavris __
eorgia Institute of Technology
tlanto, GA 30332-0150
_w.asdl.,qatech.¢du 30

Figure 30
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TECHNOLOGY IDENTIFICATION: TECHNOLOGY IMPACT MATRIX (TIM)

Once the compatibility matrix is established, the potential system and sub-system

level impacts of each technology need to be determined. The impacts must include benefits

and degradations for an objective assessment.

Based on the probabilistic nature and issues regarding technological developments

described above, a Technology Impact Matrix (TIM) is formed for the technologies

identified in the Morphological Matrix. Recall that the impact in a synthesis/sizing tool is

simulated via changes in disciplinary technical metrics, "k" factors. Consequently, the

impact of a technology can be defined by a technical "k" factor vector whose elements

consist of the benefits and penalties associated with a specific technology. Each element of

the vector has an estimated impact value and an associated distribution based on the

technology's TRL. It should be noted that the impact value in the TIM is the "theoretical

limit". With this impact value, the technological uncertainty, or distribution associated with

a given "k" factor, is defined as a function of TRL and impact value. Not all technologies

will affect each element of the vector, but the vector must capture all technologies.

• The technical metric impact shown

assumes that the impact values are

achieved when the technology is fully

matured, i.e. TRL=9

• This assumes that the technology can

meet the anticipated benefit on

schedule and within budget.

• Impact values determined through

literature review and supplied by

NASA Langley

Technology Identification"
TIM: Technology Impact Matrix

_r. Ditnitri _vris

_;eorgia Institute of Technology
Atlanta, GA 3033243150

www.asa[._at ech.edu
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TECHNOLOGY EVALUATION

Next, the technologies identified are applied to the vehicle concept and evaluated. The

evaluation provides data and information to the decision-maker whereby selection of the

proper mix of technologies may be performed. Yet, the search for the mix that will satisfy

the customer requirements is dominated by the "curse of dimensionality". Depending on the

number of technologies (n) considered, the combinatorial problem can be enormous, ff all

technologies were physically compatible, then 2 n combinations would exist considering an

"on" or "off" condition. In addition, the technology "k" factor vector that influences a

vehicle is probabilistic and a CDF must be generated for each combination, further

complicating the evaluation due to the "Curse of Uncertainty". For example, to estimate the

impact of uncertainty of a technology combination, a Monte Carlo Simulation of 10,000

random cases are needed. Hence, 10,000"(2n) combinations would need to be evaluated, ff

the computational expense of .......... is acceptable, a full-factorial probabilistic

investigation could ensue. Yet, if the computational expense is too high, an alternate

evaluation method is needed. A potential method for technology down select is a genetic

algorithm formulation so as to obtain a more manageable set of alternatives for further

investigation.

Technology Evaluation

• The identification of the proper mix of technologies for a given system is

dominated by the curse of dimensionality

• Curse of Dimensionality: the search space for the mix of technologies which

will "best" satisfy the system level metrics or attributes can be enormous,

even assuming only an "on"-"off' condition

- 2 n combinations, where "n" is the number of technologies

• 11 technologies implies 2048 combinations

• 20 technologies implies 1,048,576 combinations

- Computational expense of the analysis is the primary driver

• manageable: full factorial investigation with metamodel representations

• unmanageable: genetic algorithms or alternative search algorithms

• Curse of Uncertainty: Uncertain nature of technologies further complicates

the evaluation since a probabilistic analysis is needed to evaluate each of the

2 n combinations

A

Dr. Dimitri Mavrls __

Georgia Institute of Technology
Atlanta GA 30332-0150
www.asdl.qatech ¢du 32

Figure 32

164



Technology Evaluation:
"'K" Factor Mapping

- If the technologies considered can be represented with "k" factors, a metamodel

representation of the system metrics can be used.

• For each row :in the TIM, the benefits are summed and the penalties are

summed to bound a given "k" factor such that the ranges are defined _br the use

of a metamodel representation. The ranges define the technology space limits.

Technical Metric "K" Factor Elements

K Factor 1
K Factor 2

K Factor 3

Sum of Sum of
reductions increases

]- 0 +10

-40 0

I -20 +25 I

Range of"k" factor established from TIM

Response =f(kp k.2....... k_) as obtained fi'om an application of RSM to acquire a
second order equation of the form:

k k k-I k

R = bo + biN i + Z biik? + E Z bijkikj
M

_.Di_,+rJMo,',, i=1 i=1 i=1 j=i+l _/q LG_orgie Insti_ut_ of Ye_hnolagy
arlene< GA ao332_mo

Figure 33
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TIF ENVIRONMENT*: VISUALIZATION OF THE TECHNOLOGY MAPPING

Visualization of the influence of the impact factors is performed in the prediction

profile feature of the JMP statistical package. The information obtained here is similar to that

of the design space investigation.

TIF Environment*"

Visualization of the Technology Mapping

_.[ Sensitivity of response to wiQg weight

• Identify code "_" "_ ............ i
fidelity needed TOGW ]

to model a I i !

de_adation of ,_)_ [

a technology ::¢i_: ] i

en_Sronment if -_--- -_- _ --,'*-_'-----

Jlo specific Vapp i!__'_:,,,,.:.:,'--, If i i'
technologies _:i_ i

"YlFis a by- 10N [ _ .....product of 2_81_,%¢! ]

]

applying TIES. _?._, ._.__@...__._.___ .........

deterlnhled, a :"'_2 ........ _
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Technology Evaluation

• Deterministic evaluation:

- For a given technology combination, the vector elements that describe the
technologies are summed and inserted into the metric metamodels and the
equation evaluated

- The result is a "theoretical" value of the metric due to the impact of the
technology combination

- Advantage: quick assessment and initial insight to technology impacts

• Probabilistic evaluation:

- Define each technology vector element as a function of TRL which will result in
a distribution for each "k" factor

- The metric metamodel is evaluated as in the deterministic case except that it is
repeated numerous times for a given combination to simulate the uncertainty

- The result is in the form of a CDF for each metric

-Advantage: realistic assessment of the impact of technological uncertainty

• Assumption: the impact of the technologies are additive
,//

Or, 0imitri taavris _J¢_ d_G_r_o _titute of TechnologyAtl_ a GA 30332-0t50
w_._d .gntech.edu 35
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Technology Evaluation:
Sample of Probabilistic Assessment

• Each technology vector was defined as a function of TRL so as to determine the shape

distributions of the "k" factors Tl=f( I1_ ,_l ...... ) T2=f(i_, _ ......... ), etc..

• A Monte Carlo Simulation was executed on the response equations to determine the resulting

distribution data T1, T2. '{T .._"'_&_f

• The addition of more technologies may move the mean of the response depending on whether

the technology improves or degrades a given metric, ff there is no influence from a given

technology, the mean will not be affected but the variance may increase

TOGW Frequency Comparison $/RPM Frequency Comparison

Conventional Baseline = 855)352 lbs Conventional Baseline = $0.1084
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Technology Selection:
Option 2." Technology Frontiers

Due to the multi-attribute and probabilistic nature, visualizing information or results from a

MADM approach is not very intuitive. Technology Frontiers can solve this problem.

Technology Frontier: the limiting threshold effectiveness parameter attainable from any

combination of technologies for different confidence levels.

"Best"

Effectiveness

parameter

O N, Combination

O

O Viable

O ® Teclmology

Region

Two primary effectiveness parameters, such
as Performmlce and Economies, can be

utilized to compare various technology

alternatives and may be constructed from a
user defined utility function for which
maximtzation is desired.

Subjectivity introduced through weightings.

o • Threshold limits may be placed on the
effectiveness and the investment cost ando
the combinations that satisfy the thresholds

Technology can be readily identified,
Frontier

Investment Cost* _ld,'al_l_,,,_mfls,)t_tJ]elrl_ 39

Figure 39
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10% Confidence

Technology Selection:
Option 3." Resource Allocation

t ....................................
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t ....
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• Decision-maker may readily identify a technology's influence on a given system metric

and compare the performance influence and the economic influence.

• Compare confidence level to target reduction needed for feasibility

• Identify the contribution of individual technologies to optimally direct resources

_.D,_,_,M_J_ • T5 provides sufficient SLN reduction, but extreme degradation to $/RPM _AG_rg_a _fitute of Y_hnology
Atlmt_ GA 30332_150

www._o J._czt_h.edu 43 I

Figure 43

Conclusions

• A comprehensive, robust, and structured process for the

systematic down-select of technologies for the problem at hand.

• Process provides valuable insight to the decision-maker in the

conceptual phases of design to optimally direct program

resources.

• No one technology combination can be considered the universal

solution since the selection process is riddled with subjectivity.

TTES allows for a quantification and tracking of the

subjectivity.

• Future work will focus on:

- Incorporating schedule and budget issues regarding the development of

technologies and quantifying the impact on a system

- Create a recipe for TIES based on generic problem that may be

encountered during a design process

)el Dimitri g_t_in _/_
Georgia Institute of T_hnology
Atl_*a, GA 30832_0150
www._tl.oo't ee h.extu 44

Figure 44
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Nondeterministic Approaches

Potential for Future Aircraft Support

Dr. James M. Norton

Lockheed Martin Aeronautics

Fort Worth, TX 76101
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USAGE OF NONDETERMINISTIC MODELS

In the current aerospace environment, which poses continuing challenges to "do more

with less" the adverse effects of uncertainty on decision making must be recognized and

minimized. Nondeterministic approaches are predictive tools that permit uncertainties to be

quantified, by a variety of models, providing decision makers a sound technical basis for

trade-offs among performance, schedule and cost. The illustrative examples show a broad

scope for potential applications that don't require specialized software or advanced statistical

skills.

LOCKHEED MARTIN/_

Usage of Nondeterministic Models

Provides formal methodology to quantify the extent and

consequences of uncertainty inherent in engineering properties /

characteristics

Provides an alternative to "Worst Case" stacking often utilized

with deterministic methods

• Concepts will be illustrated by three aircraft support related

applications

Figure 1
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ASSESSING THE EFFECTIVENESS OF TIME CHANGE INTERVALS

One method of avoiding equipment failures is to remove the equipment from service

at fixed flight hour intervals. Although failures are avoided, some remaining equipment life

is lost and the total number of maintenance actions is increased. Analysis of various

conditional life distributions can help decision makers determine the appropriate policy.

LOCKIIEED MARTIN/_

Assessing the Effectiveness of Time

Change Intervals

Equipment whose life exhibits wear-out characteristics can

be removed from service at fixed flight hour intervals

resulting in:

- Reduced failures

- Increased maintenance actions

- Loss of potential remaining equipment life

Analysis of the Nondeterministic equipment life

distribution can help decision makers determine the

appropriate policy.

811312001

Figure 2

176



ASSESSING THE EFFECTIVENESS OF TIME CHANGE INTERVALS

Suppose a generator has a Weibull life distribution with mean = 800 flight hours and

a shape parameter = 1.1. A sketch of the life and conditional life distributions may provide

some preliminary insight as to the effectiveness of a time change after X hours of service.

The risk of failure prior to the time change, as well as the average remaining life lost, is

easily computed as shown from common spreadsheet functions.

LOCKHEED HARTIN/_

Assessing the Effectiveness of Time

Change Intervals
An example -

Suppose a generator has a Weibull life distribution with mean = 800 flight hours. A literature

source suggests a Weibull shape parameter = 1.1. We wish to evaluate the effectiveness of

removing and replacing the generator every X flight hours.

V _Fimet_._ailure Disgibution

PDF _f.._._". _ Time to Failure. given survival till X FH

Probab tyf lu op, ortoX--,- x,(- s a"e)
Average remaining life =

Scale • EXP (K1 + GAMMALN (K2)) • (1 - GAMMADIST (K1, K2, 1, TRUE)) - X

Vvn ._. /" x "_shape
ere hi = _._) . K2 = 1 + 1/shape, GAMMALN ( ) = Excel Supplied Function

GAMMADIST ( ) = Excel Supplied Function

Figure 3
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ASSESSING THE EFFECTIVENESS OF TIME CHANGE INTERVALS

The results in the table show modest reductions in failures from time changes (shape

=1.1), which need to be assessed in conjunction with the consequences of failure. The likely

results and sensitivity of results to variations in model parameters can be examined before

any data is available, Statistical estimation methods are used to draw inferences about model

parameters from data,

LOCKHEED MAIITIK/_

Assessing the Effectiveness of Time

Change Intervals
WEIBULL SHAPE

Time Change 1.1 1,3 1.5
Interval

400

800

No Time

Change

20

8.8

14851

10

9.3

7160

0

10

0

20

7.0

13179

10

8.2

5918

0

10

0

20

5.7

12032

10

7.4

5044

0

10

0

# Time Changes

# Failures (Weibull
Renewal)

Unused Life

# Time Changes

# Failures (Weibull
Renewal)

Unused Life

# Time Changes

# Failures (Weibull
Renewal)

Unused Life

TABLE ENTRIES ARE AVERAGES FOR 8000 FH A/C LIFE.

Figure 4
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A SUFFICIENTLY LARGE PROBABILITY OF A BRAKE FIRE

Frequently during landing / taxi military aircraft experience significant increases in

brake temperature which, if coupled with hardware failures in the fuel system, could result in

a fire during refueling. A nondeterministic model can estimate the frequency of fires, to help

determine what (if any) interventions are needed.

LOGKllEED MARTIN/_

A Sufficiently Large Probability of a

Brake Fire May Require New Support

Equipment or Design Changes

X

8/13/2-001

Figure 5
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CONDITIONAL PROBABILITY BRAKE TEMP

Key factors that determine brake temperature are defined during discussions with

technical experts. Each factor is characterized by a probability distribution, derived from

data and/or inputs from experts. The individual distributions are combined, reflecting any

significant correlations, to form the brake temperature distribution. Live testing under

realistic environmental conditions results in an estimated fuel ignition distribution that is

combined with the brake temperature to quantify risk.

LOCKlf£EO WIARTIN/_

Conditional Probability Brake Temp is

Hot Enough to Ignite Fuel

811312001

Ambient Teml

I

T

Taxi Distance

Head Wind

I_d_ Brake Temp_1

/

Rv.uway Length Used ]/

Fuel Ignition Tern

t
Compute Probability Brake Temp

Exceeds Ignition Temp

James M. Norton

Figure 6
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PRICING REPAIRS FOR A FIXED TIME PERIOD

To help customers plan for the costs associated with repair of equipment failures in

their aircraft fleet, a contractor may offer to provide repairs for a fixed time period at a pre-

specified price. One NDA approach to help establish an equable price is to model cost as a

compound random variable.

LOCKHEED MAIITIN/_

Pricing Repairs for a Fixed Time Period

8113/2001

All Equipment Failures that Occur During a Fixed Time

Period will be Repaired for a Pre-Specified Price

One NDA Approach to Help Establish an Equable Price is

to Model Cost as a Compound Random Variable:

Total Cost = C 1 + C z + .... + C n where

Ci = Random Variable

Cost of ith Repair

N = Random Variable

Representing

Number of Repairs

in the Defined

Time Period

Figure 7
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PRICING REPAIRS FOR A FIXED TIME PERIOD

Frequently, the number of failures to be repaired in a fixed time period can be

characterized by a Poisson distribution. Repair cost means and variances are then utilized to

compute the mean and variance of total repair cost. The risk that the cost of the repairs will

exceed the price charged can be assessed after a distributional form for cost is selected.

LOCKHEED MAIITIN/_

Pricing Repairs for a Fixed Time Period

The Mean and Variance of Total Cost are:

--]

Meat I---C°st--.J

VTotal'_
Variance L-C°st-J

= Mean EN-] . Mean E C3

Mean E N-] . Varlance [- C-] + EVadance N-] • EMean C7 2

Where Ci is Independent,

Identically Distributed,

Use Exact or Approximate Distribution to Evaluate Risk

PDF

Risk of Not Covering Costs

Cost Price

Figure 8
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DIVERSE SUPPORT RELATED APPLICATIONS BENEFIT FROM

NONDETERMINISTIC APPROACHES

The use of nondeterministic methods for support-related applications has a long

history, with many companies establishing formal specialty groups that concentrate on

application areas, such as safety, reliability, maintainability, and logistics support. Basic

models in the specialty area are generally well known and have developed some commonly

accepted standards for use. The rapidly increasing capability to collect, store, process, and

share data will reveal new relationships among variables, leading to the development of more

sophisticated nondeterministic methodology.

LOCKllEED MAFITIN/_

Diverse Support Related Applications Benefit

from Nondeterministic Approaches

• Tech Order Changes (Often Inspection Related)

• Rates of Damage Accumulation

• Spares Requirements

• Warranty Provisions

• Repair Turnaround Capability

• Diagnostics / Health Monitoring

Figure 9
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KEYS FOR SUCCESSFUL IMPLEMENTATION

As advances in nondeterministic methods are achieved, some basic keys for

successful implementation remain unchanged. Although the items listed are fairly obvious

and not exhaustive, they are easy to forget.

LOCKHEED MARTIN/_

Keys for Successful Implementation

Establish clear objectives ! expectations for model

results

Develop model structure with guidance from experts

in affected areas

Collect sufficient reference information ! data for

credible model parameter estimates

Summarize / communicate results that are technically

rigorous, yet readily understood

- Avoid technical jargon

- Delineate assumptions

- Graphically depict results, where possible

Figure 10
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ANSYS Probabilistic Design System
Exploring Randomness and Scatter Reveals A Simple Truth

Dr. Stefan Reh

Team Leader Probabilistic Design
ANSYS Inc,

Canonsburg, PA 15317
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ANSYS PROBABILISTIC DESIGN SYSTEM

In December 2000 ANSYS Inc. has released the version 5.7 of its ANSYS Finite-

Element program. This release (and any following ones) has a probabilistic design system

integrated into it. This tool enables users to take uncertainties of their Finite-Element model

input parameters into account. The probabilistic approach is more realistic and closer to

reality than the purely deterministic approach, which tends to ignore uncertainties. Using the

ANSYS Probabilistic Design System (ANSYS/PDS) users can quantify the quality and the

reliability of their products and consequently make informed decision on how to improve

their products with respect to quality and reliability.

ANSYS Probabilistic Design System

Exploring Randomness and Scatter Reveals a Simple Truth

IT'S A PART OF REALITY - EVERYWHERE

Probabilistic Design: Bringing Engineering closer to REALITY!

Probabilistic Analysis of Gas Turbine Engines using the ANSYS Probabilistic Design System

Figure 1
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PROBABILISTIC DESIGN SYSTEM: INTRODUCTION

If we analyze a component (for example a turbine blade like those shown here), then

we start out with the fact that the component is described by a certain set of input parameters,

namely material properties, geometric extensions of the component and boundary conditions

that describe how the component is loaded and where and how it is fixed. Then the

component is analyzed, and as result we can look at its deformation and review the stresses

and strains. In addition, we can assess its fatigue lifetime or its creep behavior and such.

Probabilistic Design is based on the fact that all input parameters are subjected to scatter.

Take, for example material, properties, ff you measure a particular material property then you

will observe measurement values that are different from specimen to specimen. Also, the

geometric extensions of a component can only be manufactured within certain tolerances. To

strive for perfection is physically not possible and even trying to get close to perfection is not

reasonable in financial terms. Also loads and boundary conditions are subjected to scatter,

i.e. there are some uncertain influences that we have to accept and live with. As a direct

consequence we have to face the fact that the output parameters are subjected to scatter as

well, i.e. they are uncertain as well. ANSYS has developed a probabilistic design system that

can take the randomness of such input parameters into account and provide the necessary
conclusions.

ANSYS Probabilistic Design System:
Introduction

  om.on 
-)Material -)Deformations

-)Geometry -)Stresses

-)-)Loads -)-)Lifetime

-)Boundary Condition (LCF,...)

T
As a consequence of the

uncertainties of the input

parameter there will be also
uncertainties of the results

®

AN
Probabilistic Analysis of Gas Turbine Engines using the ANSYS Probabilistic Design System

Figure 2
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PROBABILISTIC DESIGN SYSTEM: FEATURES

The ANSYS probabilistic design system is available at no charge for customers

having an ANSYS license. It is automatically a part of any ANSYS product. It works with

any ANSYS model no matter what the underlying physics is. It allows for a large number of

random input and output parameters. The random input parameters can be correlated in order

to address random fields. Two widely used and very robust probabilistic methods have been

implemented, namely then Monte Carlo Simulation method and the Response Surface

Method. Both are available with various sampling techniques. In order to fit response

surfaces, the ANSYS/PDS offers several sophisticated regression analysis techniques.

Included are techniques to apply transformation functions for cases where a quadratic

response surface is not sufficient. Also filtering mechanisms can be used that will filter out

insignificant terms in the regression model in order to avoid the "over-fitting" problem. To

reduce the wall clock time of a probabilistic analysis, the PDS comes with a tool that will

automatically distribute the various jobs in a heterogeneous network of computers. This

includes the capability to submit a job that has failed due to CPU or network problems to

another CPU. Naturally, the ANSYS/PDS offers a great variety of tools to visualize the

probabilistic results, such as histogram plots, cumulative distribution plots, scatter plots,

sensitivity plots and so on.

ANSYS Probabilistic Design System:
Features

AN
Probabilistic Analysis of Gas Turbine Engines using the ANSYS Probabilistic Design System

• The ANSYS/PDS is FREE for every ANSYS customer

• It works with any ANSYS model (static, dynamic, linear, non-linear, thermal,
Structural, Electro-magnetic, CFD ...)

• It allows for a large number of random input and output parameters

• It has 10 statistical distributions for random input variables

• The random input variables can be correlated

• Probabilistic methods:

Monte Carlo - Direct & Latin Hypercube Sampling

Res ponse Surface - Central Composite & Box-Behnken Designs

• Sophisticated regression analysis capabilities for response surface fitting
(automatic transformation functions for a "more than quadratic" fit, automatic
filtering of insignificant regression terms to avoid "over-fitting" problem)

• Use of distributed, parallel computing techniques for drastically reduced wall clock
time of the analysis

• Comprehensive probabilistic results (convergence plots, histogram, probabilities,
scatter plots, sensitivities .... )

State-of-the art statistical procedures to analyze and visualize probabilistic results

Figure 3
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PROBABILISTIC DESIGN SYSTEM: CUSTOMER BASE

As many people know, ANSYS is widely used in the industry, and here you see only

a few of our customers who gave us permission to show their company logo. The ANSYS

Probabilistic Design System is an integral part of ANSYS 5.7. More than 35 companies are

already using it worldwide.

ANSYS Probabilistic Design System:
Customer Base

ANSYS Customer Base

• All "Top 10" Fortune
100 Industrial

companies

• 73 of the Fortune 100

Industrial companies

• Over 5,700 commercial

companies

• Over 40,000 commercial
customer seats

• Over 100,000 university
licenses

Probabilistic Design

• Available in ANSYS 5.7

• Used by 35 companies
worldwide

ProbabilisticAnalysisofGasTurbineEnginesusingtheANSYSProbabilisticDesignSystem

Figure 4
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RELIABILITY OF COMPONENTS: EXAMPLE TURBINE BLADE

As an example for the application of the ANSYS probabilistic design system, the

probabilistic analysis of a turbine blade is shown here. The example is a cooled (hollow)

rotating blade. The probabilistic analysis includes the randomness of a total of 17 input

parameters. For example, the blades are manufactured by precision casting. During casting of

the blade a slight shift of the core that makes up the hollow cavity can occur. This core shift
makes the wall of blade thinner on one side and thicker on the other. Also there is an

oxidation protection coating on the hot gas surface of the blade. The thickness of the coating

is not an exact value after it is applied, but variations from the targeted thickness may appear.

It is not necessary to explain all random input parameters as listed here. Suffice it to say that

the random input parameters are from all categories, namely geometry, material and loads.

Also it should be emphasized that various different statistical distribution functions can be

applied to describe and quantify the randomness of the input parameters, such as the

Gaussian distribution, the uniform distribution or the lognormal distribution (the

ANSYS/PDS has many more). This Finite-Element model has about 60,000 elements and

180,000 nodes. One single analysis run includes a thermal analysis to evaluate the

temperature field (shown here) and a structural analysis to evaluate the thermo-mechanical

stresses. Based on these results the low cycle fatigue lifetime (LCF), the creep lifetime and

the time until the oxidation protection layer has been eroded through is calculated. One

complete analysis as described takes about 2 hours.

Reliability of Gas.Turbine Components:
Example Turbine Blade

17 Random Variables for input variables
Geometry parameters
• Cooling channel shift (Circumference)
• Cooling channel shift (Axial)
• Thickness of oxidation protection
Material parameters
• Young's Modulus (*)
• Density (*)
• Therm. Expansion (*)
• Heat conduction (*)
• Heat capacity (*)
• Oxidation depletion rate (*)

Strength related material parameters
• LCF curve (*)
• Creep rupture curve (*)

Thermal Boundary Conditions
• Hot gas temperature
• Hot gas heat transfer coefficient (*)
• Cooling air temperature
• Cooling air heat transfer coeff. (*)
• Hot gas mass flow (*)
• Cooling air mass flow (*)

3 Output parameters

UNIF(-0. 6,0.6) • LCF lifetime
UNIF(-0. 6,0.6) • Creep lifetime
LOG(0.3,0.03) • Oxidation lifetime

Temperatures

NORM(1.0,0.04)
NORM(1.0,0.05)
NORM(1.0,0.05)
NORM(1.0,0.05)
NORM(1.0,0.04)
LOG(1.0,0.05)

LOG(1.0,0.15)
LOG(1.0,0.10)

Thermo-mechanical analysis

60'000 Elements (quadratic)
180'000 Nodes

NORM(0.0,25.0)
LOG(1.0,0.2)
NORM(0.0,10.0)
LOG(1.0,0.1)
NORM(1.0,0.03)
NORM(1.0,0.05)

(*) Factor relative to nominal value or curve 2 h of CPU time per analy_ R l

Probabillstie Analysis of Gas Turbine Engines using the ANSYS Probabillstle Design System

Figure 5
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RELIABILITY OF COMPONENTS: FAILURE PROBABILITY

OF TURBINE BLADE

Crucial in today's business environment is the development of reliable products. Only

reliable products keep the occurrence of premature failures (a failure that happens before the

end of the warranty period) at an acceptable level or avoid such failures completely. The

most important measure for a reliable product is a low failure probability. As a result of the

probabilistic analysis in this diagram, the probability of a failure due to one of the three

failure modes (LCF, creep, oxidation) is plotted versus the operation time in years. A

particular failure probability can be derived from this plot by choosing a value on the X-axis

for the operation time (i.e. the time how long the blade is supposed to be in service) and then

going up to the probability curves related to the failure modes and reading the probability on

the Y-Axis. In this diagram, the results calculated with the "response surface method" are

compared with the results gained from 500 Monte Carlo simulations. In this example, the

Monte Carlo Simulation results provide benchmark values the "response surface method"

results should agree with for the failure probability ranging from 2% to 98%. Obviously,

there is a very good agreement between the results of the two methods in this probability

range.

f_
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RELIABILITY OF COMPONENTS: SENSITIVITIES FOR TURBINE BLADE

Probabilistic methods also automatically deliver probabilistic sensitivities. These

sensitivities describe how much the scatter or the failure probability of a particular random

output parameter (shown here is the LCF lifetime) is affected by the scatter of the individual

random input variables. The ANSYS/PDS sorts the input variables into two groups - the

significant and the insignificant ones. Then the significant input variables are ranked by the

importance and plotted. These probabilistic sensitivities provide highly valuable information

in many ways. If the resulting failure probability is too high, then we need to improve the

design in order to achieve an acceptable level. The sensitivities clearly indicate which input

variables are the drivers of the high failure probability. Hence, the input parameters must be

tackled in the order of their importance. There is no point in focusing on unimportant

parameters. Sometimes the scatter of some input parameters are just estimated based on no or

very" little measurement data. If these parameters turn out to be very important for the

reliability of the design, this indicates that lab tests should be done to collect more data about

that input parameter, ff the current design is sufficient, i.e. has an acceptably low failure

probability, and then there is typically the need to save money without sacrificing the

achieved reliability. In this case, the manufacturing requirements for the input parameters can

be relaxed and a possibly coarser or cheaper manufacturing process can be chosen, or the

quality assurance requirements for those parameters can be relaxed. This typically leads to

huge savings in the manufacturing process.

Reliabi!ityof Gas Turbine Components:
Sensitiwties for Turbine Blade

Sensitivities of the output parameters

with respect to the random input variables
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RELIABILITY OF COMPONENTS: EXAMPLE TURBINE STAGE

Products, of course, usually consist of many components and not just one. Therefore,

to assess the reliability and quality of a product, it is important to evaluate the system

reliability of all parts the product is made of. In the example here, we consider an entire

turbine stage consisting of 100 turbine blades on the circumference plus the turbine disk on

which these blades are mounted. For the turbine blades the same input parameters are

considered as uncertain input variables as described above. For the turbine disk, a separate
finite-element model has been built and evaluated for its fracture mechanical lifetime. The

fracture mechanical lifetime is driven by the existence of a crack in the disk center that is

small enough to just be overlooked by non-destructive inspection. The crack will grow in

size due to the cyclic loading of the disk by the start-up and shutdown cycles. To model the

crack growth a simple Paris law has been used. The crack growth is governed by the initial

crack size, the fracture toughness and the crack growth parameters of the Paris law, all of

which are included in the probabilistic analysis as random input parameters.

Reliability of Gas Turbine Systems:
Example Turbine Stage

Turbine Stage
100 Turbine blades on circumference
1 Turbine disk

Random input variables for turbine blades

• Geometry parameters (as described above)
• Material parameters (as described above)
• Strength parameters (as described above)

Random input variables for turbine disk
Cyclic crack growth of an existing crack in disk center that
is just not detectable in non-destructive inspection

(AO._r_ay) n Zyklenda = AZ_V._ = A >Kt,ma x =Klc
dN

• Initial crack sizeainit
• Fracture toughnessKl¢

• Crack growth parameters A and n

Random input variables for entire stage
• Thermal boundary conditions (as described above) a |

Probabilistic Analysis of Gas Turbine Engines using the ANSYS Probabilistic Design System
AN

Figure 8
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RELIABILITY OF COMPONENTS: COMPONENTS OF THE TURBINE STAGE

In the top half, the results for the individual blades are shown. This is the same

picture as already shown before. Shown in the bottom half is the result for the turbine disk.
The Finite-Element model of the disk shows the stress field in the disk. The failure

probabilities due to a fracture mechanical failure of the disk is shown in the bottom right

diagram.

Reliability of Gas Turbine Systems:
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RELIABILITY OF COMPONENTS: COMPONENTS OF THE TURBINE STAGE

This diagram shows the overall failure probability results for the entire turbine stage

plotted versus the operation time in years. The green curve is the probability that the disk

fails due to crack growth. The brown curve is the probability that any of the 100 blades fails

due to oxidation. The pink curve represents the probability that any of the 100 blades fail due

to creep. Analogously, the blue curve is the probability that any of the 100 blades fail due to

low cycle fatigue. The red curve is the probability that the turbine stage fails due to any of

these component events, i.e. failure of the disk OR failure of any blade due to any failure

mode. Obviously in this example here, the turbine stage as a system is driven only by a

failure of the blades due to creep or LCF.

Reliability of Gas Turbine Systems:
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RESEARCH OBJECTIVE

Deterministic optimization does not account for neither the inherent variability of the

operating conditions nor the model uncertainties. The objective of this research is to adapt

the existing optimization techniques to automatically include these effects. This results in

more robust designs.

Research Objective

o Observation: use of mathematical optimization

techniques frequently leads to designs whose

performance is very sensitive to small fluctuations

in the design model parameters.

o Some of these parameters can be highly variable
or hard to estimate.

* Objective: adapt existing optimization techniques

such that the solution becomes fairly insensitive to

(minor) fluctuations in some or all of the

mathematical model parameters.

Figure 1
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DEFINITION OF ROBUST DESIGN

Robust optimization results in the design, which performs optimally under the

variable (or uncertain) operating conditions over the entire lifetime of the design.

For this computation we assume there are no catastrophic failures; we are dealing

with everyday fluctuations. This is quite different from reliability computations.

Reliability Problem Class  'cation

No engineering

applications

Cost-bene][t analysis

Robust design and

optimiz, a_io_

Risk analysis

Reliability-based

design & optimization

Reliability is

not an issue

Everyday fluctuations Extreme events

Frequency of event

Figure 2
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AIRFOIL GEOMETRY OPTIMIZATION

Find optimal airfoil geometry, which results in minimum drag Ca over a range of free

flow Mach numbers M while maintaining a given lift Ct* = 0.6. We start from a NACA-0012

airfoil.

For this example we assume a uniform distribution for the Mach numbers: M [] [0.7,

0.8]. All Mach numbers within this range are equally likely. The Mach number cannot fall
outside this interval.

We solve the inviscid Euler equations using NASA's FUN2D code, which computes

analytic derivatives. Far field boundary at 50 chord lengths.

Design Variables in FUN-2D

Design vector d:

angle of attack and
20 box-constrained y-
coordinates of the

control points for the
airfoil spline

.-0.5 0 0,5 1 1,5

Figure 3
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OPTIMIZATION FRAMEWORK

We used the ISIGHT framework, a product of Engineous Software, as the

optimization engine. The framework provides an interactive high-level programming

environment to define the optimization problem. It automates the communications between

the user-provided analysis codes and the pre-programmed optimization routines.

iSight ©ptimizatiort Framework

o Task Manager

o Process Integration

- Parser for Input/Output files

- Control structures

° Parameter Definition

Variables, objectives, constraints

, Optimization Plan

o Solution Monitor

- Tracks all design variables during optimization

Figure 4
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PROCESS INTEGRATION

The data flow during the optimization process is defined in the Process Integrator that

includes several control structures and statements (IF, WHILE, LOOP). The flow is built up

using a GUI, or can be implemented directly in the MDOL language.

FF()csss b_tegration - Cont_ !s

Figure 5
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INPUT - OUTPUT

The built-in optimization routines communicate with customer software using input

and output files. The Parser commands can be provided directly using the MDOL syntax, or

can be generated by iSight using the provided GUI.

Process Integration I/0 Parse::

Figure 6
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MODEL PARAMETER DEFINITIONS

Independent variables, objective functions and constraints are specified in the

Parameter Definition module. Simple bounds can easily be included for the independent

design variables.

Parameter Definition, s

Figure 7
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OPTIMIZATION ROUTINES

Several Optimization routines are built-in. We made use of the Modified Method of

feasible Directions (CONMIN) and Sequential Linear Programming (based on ADS

routines).

©ptimization Plan

Figure 8
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RESULTS MONITOR

All intermediate results of the optimization process are stored in a database. The

results monitor displays the optimization histories in real-time. Here we show the

optimization history for a drag-objective.

©ptimization Results Monitor

Figure 9
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DETERMINISTIC OPTIMIZATION STRATEGIES

We highlight two methods: single-point and multi-point optimization

Single Design-Point Optimization

The design vector d (geometry and angle of

attack) is the only variable in the objective

Fix all other model parameters at their

design value. We consider only 1 free flow

Mach number M= mdesig n (e.g. average
Mach number during cruise stage):

dn_g Cd(d, Mdesign)

subject to C l (d, M design ) _- C;

Figure 10
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PROBLEMS WITH SINGLE-POINT OPTIMIZATION

Not clear which point to select as design point. The mean value is not a good choice

for the design point when the model is highly non-linear.

Even though we are trying to push out MD/v, the highest Mach number (M = 0.8) is

not necessarily the best design point either.

The impact of fluctuations of the model parameters (due to either inherent variability

or model uncertainty) on the response is completely unknown. The optimized design may

actually perform worse under such "off-design point" operating conditions.

Problems w#h Sit gle Point Opt.
Choice of Mdesign dramatically affects performance
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MULTI-POINT OPTIMIZATION

Attempt to overcome difficulties of single-point optimization by including several

design operating conditions in the objective function

Multi-Point ©ptimization

• The design vector d (geometry and angle of

attack) is the only variable in the objective

° Consider multiple design conditions at selected
values of the free flow Mach number

o Objective function is a weighted average of all

these design conditions

n

min ZWiCd(d, Mi)
d_D

i=1

subject to Cl(d,Mi) >_ C_[ for i = 1,n

Figure 12
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PROBLEMS WITH MULTI-POINT OPTIMIZATION

The resulting drag profile is sensitive to the choice of Mach numbers. It is not clear

how to decide which Mach numbers to include in the objective.

What is the appropriate weight for each design condition (i.e. Mach number) in the
overall linear combination?

Multiple drag troughs can be observed, one at each sample point.

Problems with Four-Pob f Opt.
Choice of design conditions affects performance
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STOCHASTIC OPTIMIZATION

We seek to maximize the expected performance over all possible operating
conditions.

Stoc 7ast c @ztmxzatlo  

o Modify the objective to directly incorporate
the effects of model uncertainties on the

design performance

o Highlight 2 methods:

- Expected Value Optimization

- Second-Order Approximate Results

Figure 14
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STOCHASTIC OPTIMIZATION USING DECISION TREES

Consider all possible designs di and set up a decision tree.

Model all uncertain variables using (Joint) Probability Density Functions

The objective is to minimize the drag over the entire Mach range.

This shows that the best decision (or design) is the one that minimizes the expected

value of the drag Ca with respect to M.

taf s  cal Decision 7?ee

Z)ecis;i_:m _-"

/ Ca(d_U 1)

Cd(dl, M2)

Consequence

_'/___ Cd(d.M,.)
/.

/

d_ /_ M_ Cd(d2,g,)

C.(a ,M9

Decision _ _" C_(d_,M,.)

\_ G(a.,M,)
C d(d.,Mz)

\

\
Designer controls shape variables d \..

Mach number is governed by chance Mm_ Ca(daM.)

Figure 15
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MATHEMATICAL FORMULATION

The objective in the optimizationprocessis given by the expectedvalueof thedrag
with respectto all possibleoperating conditions. We integratethe product of the drag
functionCd and the probability density function of the Mach number

Mathematic'a{ Formulation

Minimize the expected value of the drag

over the design lifetime:

rain EM(Cd(d,M))= min _ C_(d,M)fM(M)dM
d_D d_D

C d is drag function

d is design vector (geometry, angle of attack)

Mis uncertain parameter (Mach number)

fM is Probability Density Function of Mach number

Figure 16
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APPLICATION TO AIRFOIL PROBLEM

The design variables are the geometry of the airfoil. The angle of attack is a control

variable. The angle of attack will be adjusted to achieve the required lift when the Mach

number fluctuates. Here we only model slowly varying Mach numbers so that the constraint

remains deterministic. Probabilistic constraints will be considered in a future study.

Applicatiot to Airfoil Problem

o Integrate over the uncertain parameter M, compute

the expected value of Cd with respect to the free
flow Mach number M.

® Minimize this integrated objective with respect to

the design vector d.

Actual flight data are readily incorporated in the

probability density functionfM(M)

min L Cd(d'M)fM(M)dM
d6D

subject to C l > C/

Figure 17
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SECOND-ORDER SECOND-MOMENT APPROXIMATION

When the objective function is approximated by a second-order Taylor series

expansion, an analytic evaluation of the integral can be performed. This leads to a

deterministic equivalent of the stochastic optimization problem.

SOSM Approximation7

Approximate objective by second-order Taylor

series expansion about the mean value of M, and

evaluate the expectation integral analytically.

min ICd(d,M)fM(M)dM =_
d_D

M

F
dnfin[_C a (d, M ) + ½Var(M ) OM 2 M=-_

subject to :

Figure 18
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EFFECT OF SOSM CORRECTION

Second-Order information represents curvature of Ca-M curve.

The weighting between drag and design point and curvature depends on the variance
of the Mach number.

With SOSM method the drag is not reduced quite as much as for single point design

but the drag is much less sensitive to variations in the Mach number, The drag trough is

avoided, no "over-optimization".

Second-Order derivatives were computed using finite differencing of first-order

derivatives. This introduces numerical noise in the derivative and may "confuse" the

optimization algorithm.

Comparison with S# gle Point Opt.
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EXPECTED VALUE OPTIMIZATION

Here we use a numerical integration procedure to perform the integration of the

objective function during each optimization step. This is computationally more expensive
but also more accurate.

Direct Evaluation of b tegrat

o Evaluate integral directly using a numerical

integration method.

o To avoid over-optimization, make sure you

select different integration points for each

optimization step.

o We used 4 point integration with random

selection of integration points.

Figure 20
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ADVANTAGES OF EXPECTED VALUE OPTIMIZATION

Robust design consistently has smallest expected value (up to accuracy of

integration).

There is no need to arbitrarily select design conditions (i.e. Mach numbers) or

weights any longer because we integrate over the PDF of the operating conditions.

Drag troughs are reduced and do not occur at integration points any longer.

Additional model uncertainties can be accounted for as well by extending the

integration over the uncertain model parameters,

Comparison with Multi-Point Opt.
EV-design independent of arbitrary selection of Mach numbers
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COMPUTATIONAL EFFORT

SOSM Method replaces integration with a second-derivative evaluation, ff accurate

higher-order derivatives can be computed, this method results in significant computational

savings over the full integration.

SOSM scales linearly with the number of uncertain variables, while integration

algorithms generally follow a power law.

Relative Computafiot al Effort

Optimization
Method

Sh_SL_>Poir_t

SOSM(*)

Expected

Value (4pts)

1 Random

Variable

3

4

3 Random

Variables

7

64

(*) Less if analytic derivatives are available

Figure 22
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ASSUMPTION OF PDF

For bounded Mach-intervals a Beta-distribution seems appropriate. The Beta PDF

can represent a variety of shapes (symmetric or not, bathtub...). For unbounded distributions

a detailed analysis of the tails is required.

Here we show several assumptions for the PDF, and will assess their impact on the

optimal drag-rise curve.

Various PDFs for Mach Number

-_'- Beta(3,1) Beta (1,3) ...... Be ta (5,5) .... Trunctated Normal

I [ I

0.7 0.72 0.74 0.76

Mach number

Figure 23

221



IMPACT OF PDF

The Expected Value Optimization results automatically reflect the relative

importance of each of the Mach numbers. Depending on the relative likelihood of the Mach

number (shown in previous slide), the drag is reduced to a larger or smaller extent. This

shows that the optimal drag-rise curve depends on the probability density of the Mach

number.

:mpact of PDFj:or Mach Number
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FURTHER WORK AND SUMMARY

In future research we will extend the method to include effects of other uncertainties

besides the Mach number; preferably using faster integration techniques (adaptive sampling).

We will also include probabilistic constraints.

Co  clusions

Statistical decision theory indicates that
minimizing the expected drag over the lifetime
leads to the optimal robust design. This removes
the arbitrariness from the selection of the design

conditions and/or weights, which is found in

multi-point optimization.

- SOSM shows considerable improvement in the

robustness of the design compared to single-point.

o The SOSM analytical approximation shows that,
at the mean Mach number, the first-order

sensitivity does not affect the expected value of

the design.

Figure 25
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AN OVERVIEW

The initial version of the Robust Design Computational System (RDCS) was

developed as a cooperative effort between DARPA, The Boeing Company, The Ford Motor

Company and MacNeal Schwendler Corporation during 1996 -1999. Since then the product

is continually being enhanced using BOEING internal funds. The RDCS product is being

used internally within Boeing at several sites. A commercial version of the product called

MSC.Robust Design is being marketed by MSC software as part of engineering service

engagements.

An Overview of the Robust Design Computational System

(RDCS)
A Collection of Tools To Enable Low Risk Designs

Dr. Raj Rajagopal
Technical Fellow

Boeing - Rocketdyne Propulsion and Power

raj.rajagopal @boeing.com

Training Workshop on Nondeterministic Approaches and Their
Potential for Aerospace Systems

May 30 - 31, 2001

NASA Langley Research Center

Hampton, Virginia

Rocketdyne
Propulsion & Power

Figure 1
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FUNDAMENTALS THAT DROVE THE RDCS DEVELOPMENT - THE LAUNCH

MARKET BUSINESS CASE

In the following few slides I set the background reasons why the RDCS system was

developed with its implemented features. It is based on a sound business case.

Before the 80's the DOD and NASA programs the emphasis was on performance. But

the budgetary pressures, the global competition and meeting the increasing demand by

product customers for performance at an affordable cost with out sacrificing reliability

became a paramount goal. The engineers at the working level are now schooled, lectured and

admonished to be sensitive and responsive to total life cycle cost issues, The difference can

be between having a program and not having one. Experts might argue on the order of faster,

cheaper and better but all three elements are needed.

Fundamentals that Drove the RDCS Development
The Launch Market Business Case

• Cost is an independent variable

• Increased emphasis on performance at an affordable cost

• The competition is global

• Customer satisfaction demands robust products with

high quality and reliability

• Time to market is critical

Rocketdyne
Propulsion & Power

2

Figure 2
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LOW-COST DEVELOPMENT CAPABILITY NEEDED

Consider the development cost of major products in different industries such as rocket

propulsion, automobile and jet engines. The schedule and cost are dominated by the "Test

Fail Fix" design methodology. That is, there is heavy reliance on test to meet the high

reliability and performance goals. This has been a proven approach that has produced reliable

products, but the cost is not consistent with the new accelerated schedule and cost goals. So

how what can we do differently?

Low-Cost Development Capability Needed

COST
HISTORY By THE NEEDED FUTURE

rrective COST
Actions

Certified
Product

Certified

/oduct

TIME TIME

\
Technology \

for Low-Cost >

Development/
/

/

Rocketdyne
Propulsion & Power

Figure 3
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FUNDAMENTALS THAT DROVE THE RDCS

DEVELOPMENT - AEROSPACE DESIGN SHOP

Before we design a system, we need to look at the environment at which the DOD

and NASA product design teams are operating. First of all we cannot afford to fail as the

consequence of failure (cost) is very high. We live in a glass house. The rigors of low weight

and high performance demand the use of cutting edge technologies. There is tremendous

progress on the accuracy of numerical model prediction. This when combined with the

computer revolution is providing us with an unprecedented opportunity to design the

products right the first time. Any design framework that has the potential to provide a

solution to this problem must consider the elements listed on this slide and design the system

accordingly.

Fundamentals that Drove the RDCS Development
Aerospace Design Shop

• Consequence of failure high

• risk = f(probability of failure, cost of failure)

• Cutting edge technologies

• Compute intensive analysis

• Limited quantity or one of a kind hardware

• Weight critical

• Geographically dispersed design teams

Rocketdyne 4 _L _Rn_-/,_oPropulsion & Power

Figure 4

230



FUNDAMENTALS THAT DROVE THE RDCS DEVELOPMENT - AUTOMATION

VS. PROCESS IMPROVEMENT

There is a big difference between automation and a real design process improvement.

Automation makes execution of the existing design processes faster. If a failure occurs

automation will certainly help recover from the failure faster and cheaper, but what we want

to aim is to have no failure in the first place. That requires changes and improvement in

design quality and design process. It requires a paradigm shift.

Quality improvement in space products with an acceptable cost and reliability can not

achieved with out considering variability in a very fundamental way in the design process.

Fundamentals that Drove the RDCS Development
Automation Vs Process Improvement

• Automation is normally speeding up the design process

• Traditional CAE

• Partial but not the full answer

• Improvement in design quality requires a more

fundamental change

• Quality is meeting contractual/customer expectations of

the product performance consistently every time

• It is impossible to think quality improvement without

considering variability

• Reliability is a significant attribute contributing to the

quality

Rocketdyne 5 _,.,N _'_'fA#'47Propulsion & Power

Figure 5
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FUNDAMENTALS THAT DROVE THE RDCS

DEVELOPMENT -A QUALITY SCENARIO

Robustness of a product should not be considered as a product with high margins.

The reality of high performance and weight critical parts do not allow us that luxury very

often. The robustness is defined here as a designed in quality of the product that makes it

performance insensitive to variations.

All non-trivial design activities are trade off exercises. Consider the cartoon in this

slide of one performance Vs one design variable scenario. The design problem is to choose a

nominal design point in the presence of uncertainties or variations. The robust design choice

cannot be made unless the variations are considered and then an intelligent design decision

can be made. When we say we need to optimize the product performance, we need to set the

objective such as "This product shall met the performance goal 99.99% of the time" which is

a probabilistic optimization statement.

Fundamentals that Drove the RDCS Development
A Quality Scenario

o
M

g..

Higher performance operatillgpoint but sensitive to variations

Lower performance operating

point but relatively inselasitive to
variations

_ Snell V arifftion ]

Input Variable

Rocketdyne
Prooulsion & Power _TL_',E'L#VO

Figure 6
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FUNDAMENTALS THAT DROVE THE RDCS DEVELOPMENT - MULTI-

DISCIPLINARY APPROACH A MUST

Earlier efforts in the 80's were concentrated on single discipline approach to

reliability estimation such as structural reliability. However, the source of component

unreliability is driven from many sources such as manufacturing, process, inspection process,

material property variations as well as load estimation from many other disciplines such as

Thermal and fluid. Thus in order for a design system to be used on practical product design it

must be capable of accommodating multi-disciplinary analysis. The multi-disciplinary

definition should encompass traditional engineering models such as structures, thermal fluid

etc. as well as models representing non-engineering functions such as cost models.

Fundamentals that Drove the RDCS Development

Multi-Disciplinary Approach a Must

_ocketdyne 7
Propulsion & Power

-..- - ._,

r_ahce P_rr=

_' .......

_PER_TtOI

Figure 7
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RELIABLE PRODUCE DESIGNS CAN BE ACHIEVED

USING A VARIETY OF APPROACHES

The RDCS system enables robust designs in a variety of ways. Fundamentally, it

allows the engineer to understand the design space in a systematic manner both in the

deterministic as well as in the non-deterministic sense using a variety of tools. Efficiency in

the problem statement, computations and user friendliness is of paramount importance.

Reliable Product Designs Can be Achieved
Using a Variety of Approaches

• A robust design is one wherein the operating point for the
controllable design variables are optimized such that design
performance measures are less sensitive to the rando m factors that
affect the performance.

• A robust design can be achieved

• By appropriately choosing the nominal design point that yields
desired insensitivity to the random variables or

• Controlling the variations in random variables by a tighter
tolerance at an additional cost or

• By a combination of both approaches

• RDCS helps achieve robust design

• Provides tools that facilitates understanding of the design
space in a systematic manner. ( E.G sensitivity analysis, design
scan, response surface )

• Deterministic and probabilistic

Rocketdyne 8 _.__ Ar_'_='/Ai/'_Propulsion & Power

Figure 8
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REQUIREMENTS FOR A MODERN DESIGN FRAMEWORK

To meet the design process improvement needs, this slide summarizes the key

attributes that a modem design framework should possess. It includes practical issues such as

interfacing with existing analysis tools that the design shop is using with deterministic

approaches. It is also important to have a robust distributed computing capability for

compressing the analysis wall clock time. The framework should also provide a means to

compare results from deterministic design approaches with newer non-deterministic

approaches.

Requirements for a Modern Design
Framework

• It must have an architecture that is an enabler of

• Exploring the design space

• Automated design explorations

• Multidisciplinary system models

• Parametric concepts

• Interfaces with COTS (commercial Off The shelf) and
custom codes

• Computational efficiency

• Distributed collaborative computing/engineering

• Suite of design procedures

• Wide range of design tools from traditional past design

practices to more modern design procedures

Rocketdyne 9
Propulsion & Power ,8'dO',E'JAVO

Figure 9
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RDCS TOOL - AN INSTANCE OF MODERN DESIGN FRAMEWORK

The RDCS architecture cleanly separates the key elements of the design task to meet

the objectives discussed earlier. The domain specific computational models are defined in the

mathematical models (can be a network of multi-disciplinary models). The design processes

contain views and associated algorithms that enable the engineer to understand the design

problem in a variety of ways. They allow the engineer to cut and slice the design space to

under stand the design problem efficiently. It is important to recognize that theses design

process views and algorithms are completely generic and have no math model domain

intelligence in them. The system director provides the communication interface between the
three elements.

RDCS Tool

An Instance of Modern Design Framework

Dyna_tL_Analysis _[ _ _
:_ Logi_ield Support

. costAna,ysie
Mecnanical Design _ ".

Risk/Life

Aerodynamics Stress Analysis Manufacturing Management

Propulsion & Power
10

Figure 10

236



DESIGN SPACE IS SAME FOR ALL THE DESIGN PROCESSES

In the past, sensitivity analysis, parametric analysis, design of experiments using full

and fractional factorial designs, probabilistic analysis either Monte Carlo simulation or First

or Second Order Reliability Methods, Optimization, Taguchi Methods etc. were viewed as

independent approaches to product design using separate computer programs. This slide

highlights that all the design approaches are trying to solve the same design problem but with

a different sampling approach of the design space. Of course the analysis of information have

different approaches.

A single design framework that integrates and implements all approaches has

significant advantages. This integrated approach provides opportunities for avoiding wasteful

duplication in input preparation work, allows exploitation of synergy between approaches

using common compute modules, sharing results between deign processes to avoid redundant

or duplicate computations. The results are improved overall efficiency in computations as

well as quantum leap in design knowledge gained.

Design Space Is Same For All The

Design Processes

All Design
Processes

Operate on the
Same Design

Space

Design Performance Contours --

(A Priori Unknown)

Variables: xl, x2

Variabte Bounds ........

(Design Window )

Rocketdyne
Propulsion & Power

: De.te_

__Mbnti_' I

,, ? , ;: :.g_
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Figure 11
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AVAILABLE OPTIONS AND TOOLS WITHIN RDCS

The RDCS system is one instance of such a modem design framework with probably

many more frameworks to come in the future. These frameworks when implemented with a

clean architecture that separates the tasks (as earlier discussed), addition of new yet unknown

design processes m to the frame work should be an easy matter. In order for these frame

works to be used in the design shops, easy graphic user interfaces to input as well as to post

process the results is a must. They should further encapsulate the complexities of the analysis

and the technologies they represent.

Available Options and
Tools Within RDCS

Rocketdyne 12 _mU_/, _'_
Propulsion & Power

Figure 12
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WHY DO WE NEED DISTRIBUTED COMPUTING?

The systematic exploration of the design space with many different design process

views comes with a price, increased computational load. The number of cases or analysis that

need to performed can be one to several orders of magnitude greater than single one worst

case analysis. However, we are in the midst of a computer revolution wherein the cost of

computing has gone down significantly. Software that implements a robust distributed

computing technology wherein hundreds of cases can be run in parallel can make a

significant difference in the use of these technologies in a schedule driven product design

shop.

Why Do We Need Distributed Computing?

• Understanding of the design space comes at increased

computational cost

• Sensitivity analysis - finite difference(2n)

• Design scan - (partial, factorial, DOE) ( n m)

• Response surface ( n sampling points)

• Optimization (iterative)

• Taguchi analysis (orthogonal array)

• Probabilistic analysis (Monte Carlo simulation or other)

• Probabilistic sensitivity analysis (variability sensitivity)

• Probabilistic optimization

• All involve one to three orders of magnitude more function

evaluations than the traditional approach

• A design framework with out a robust distributed computing

element is not a scaleabie practical tool for design shops

Rocketayne 13 _._BaEI._'OPropulsion & Power

Figure 13
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DISTRIBUTED COMPLWING AND INTERNET TECHNOLOGY

The internet revolution is developing technologies that will make it easier to

implement the distributed computing model in engineering design. It is prudent to develop

engineering design framework software solutions that leverage the enormous investments

and progress made in the computing industry to assemble virtual design teams and
collaborative solutions.

Distributed Computing And Internet Technologies

• Distributed Computing is the basic element of internet
service model

• Collaborative computing J Client 1 ]

• virtual design teams
r

• Geographically separated _.. _, _.|
Service

• Web enabled design environment _ _:_ ....
or

i _erver
• Modern tools makes it easier to implement a distribute_ _----

computing model \,,,

• CORBA, JAVA/RMI/IIOP Internet
Network

• Web Browser, Applets, Servlets Connection

• Internet technologies provide the glue to integrate

• Heterogeneous computing platforms

• UNIX, PC/NT, LINUX

Rocketdyne 14
Propulsion& Power

Figure 14
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GRAPHICAL MATH MODEL CONSTRUCTION AND DISPLAY

The following slides are actual screen shots from the RDCS system. The left palette

represents suite of analysis tools that a typical design shop might use in their design process.

The palette is site configurable and the suite of tools can change from one design shop to
another.

The user simple clicks the icons in the palette and drops the analysis code in the

sketch pad repeatedly to construct a network of codes to be executed in a particular order

determined by the arrows. This network of functional models with arrows representing the

information flow represents the actual design process used for that component perhaps

representing many domains. The live buttons and arrows in the sketch pad can be clicked to

provide additional screens completing all the information that is needed to execute the entire

sequence.

It is very common to achieve several orders of magnitude improvement in the design

cycle time using this automate feature of the RDCS system over conventional manual

execution of codes in sequence.

Graphical Math Model Construction and

Display

Rocketdyne
Propulsion & Power

- Bottoms Up or Top Down Construction

15

Figure 15
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DETERMINISTIC DESIGN CONCEPTS

The RDCS philosophy is to provide the engineer with information that he is used to

as well as provide the more extensive design space exploration results. In this case, the

conventional deterministic worst-case analysis provides information that can be used to

arrive at safe designs but does not provide detailed information about product performance at

other design conditions or at an another point in the design window.

Deterministic Design Concepts

• Deterministic typical worst case design provides information about margins but
frequently more information is needed

Rocketdyne
Propu s on & Power
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Figure 16
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UNDERSTANDING THE DESIGN SPACE - DESIGN SENSITIVITY PROVIDES

VARIABLES RANKING

The deterministic sensitivity analysis provides a way to rank the input variables based

on their effect on output performance. This can help the engineer to determine which knob to

turn to achieve the desired effect. Typically this is done at a nominal design point, ff the

behavior is nonlinear it is necessary to perform several sensitivity analysis at different design

points.

Understanding the Design Space

Design Sensitivity Provides Variables Ranking

i o.o

Rocketdyne
Propulsion & Power
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UNDERSTANDING THE DESIGN SPACE

- DESIGN SCAN VIEW OF THE DESIGN SPACE

A detailed design space scan of the effect of input on output over the entire deign

window is one of the most powerful feature of the design space exploration. It provides the

engineer a comprehensive view of the product behavior over the entire range (from benign

linear to highly nonlinear). The use several types of factorial designs and the available

computing power to obtain the desired information makes this a practical and often used

feature of the RDCS system.

Understanding the Design Space
Design Scan View of the Design Space

• Several Sampling Schemes Exist - Partial, Full factorial, Design of Experiments

Rocketdyne

Propulsion & Power
18 BO_L"J,#II¢O

Figure 18
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UNDERSTANDING THE DESIGN SPACE - RESPONSE SURFACE

The response surface generation is a very useful feature of the RDCS system not only

to visualize but also to use the response surface as a surrogate model in probabilistic or

optimization design processes.

Understanding the Design Space
Response Surface

• Two Way Design variable Interaction

Rocketdyne
Propulsion & Power
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UNDERSTANDING THE DESIGN SPACE - DETERMINISTIC OPTIMIZATION

The mathematical optimization design process is one of the many tools available in

the RDCS system. The key point here is for the engineers to be sensitive to the presence of

variations of the design variables and make an assessment of the effect of variations on the

objective function.

Understanding the Design Space
Deterministic Optimization

• Minimizing an objective
function subject to
constraints

_Constraint Functlon:q
r

Rocketdyne
Propulsion & Power
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UNDERSTANDING THE DESIGN SPACE - TAGUCHI VIEW OF DESIGN

Taguchi analysis is very popular at the production shop in which the experiments are

performed using the actual hardware. In the context of the RDCS system, the experiments are

performed on the numerical models, but otherwise the Taguchi process remains the same.

The automatic selection of the orthogonal array based on built-in features inside the

RDCS system makes it practical to perform this type of analysis at a product design shop.

The design cycle time improvement over the manual methods can be several orders of

magnitude.

Understanding the Design Space

Taguchi View of Design

• A nominal operating design that is insensitive to noise - Signal to noise ratios

I I I

Rocketdyne
Propulsion & Power
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UNDERSTANDING THE DESIGN SPACE - PROBABILISTIC ANALYSIS

Use of the probabilistic analysis will provide quantified reliability estimates. There a

variety of distribution models such as Normal, Weibulll, Exponential etc., are available to

model the input variations. The output variations can be represented as Probability Density

Function, Cumulative Distribution Function as well Frequency Diagrams, Scatter Plots etc..

The key point here is that when probabilistic results are viewed along with extensive design

space exploration and other design process views of the product, the engineer gains a

comprehensive knowledge of all aspects of expected product behavior.

Understanding the Design Space
Probabilistic Analysis

• Provides the effect of
variability and/or
uncertainties on design
performance

Rocketdyne
Propulsion & Power
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RDCS APPLICATIONS

The RDCS system has been successfully used in a variety of industries such as

automobile industry, space industry as well in airplane industry. The breadth of the

applications lends credence to the design framework concept with all the benefits discussed

earlier and is in fact filling m a customer demand.

RDCS Applications

Automotive Space

Air Frame Rocket Propulsion

Rocketdyne
Propulsion & Power
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Figure 23
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CONCLUDING REMARKS

The challenge is to design and build products meeting cost and schedule constraints

effectively. The product should perform as expected the first time. Early indications are that

the use of design frame works such as the RDCS system have great potential to meet that
need.

Concluding Remarks

• The concept of design framework is very successful

• Dramatic improvements in multi-disciplinary analysis/

design cycle time

• A road map for achieving robust designs

• Cost avoidance because of design space exploration

• Demonstrated the value of introducing the NDA

approaches progressively.

• NDA is a critical technology but it is one of the many

other technologies to achieve reliable designs

• Use of the tool popular with advanced design groups,

but, making significant in-roads in to product teams

Rocketdyne 24
Propulsion & Power

Figure 24
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Overview of Probabilistic Risk Assessment at NASA:

Past, Present and Future

Dr. Michael G. Stamatelatos

Office of Safety and Mission Assurance

NASA Headquarter, Code Q

Washington, D.C. 20024
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RARE THINGS DO HAPPEN

PRA adds the "probability" dimension to the traditional "deterministic" dimension of

engineering and safety analyses. Although PRA, as a discipline, has been the evolutionary

product of only the last couple of decades, much of the underlying methodology has been in

use for a long time. In fact, the concept of probability for describing the likelihood that rare

events happen is ancient and dates from Ancient Greece.

nlSubCesS Starts With Safety

Rare Things Do Happen

"'It is the nature of

probability that unlikely
things will happen"

Aristotle

Figure 1
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NASA MANAGES RISK ON A DAILY BASIS

NASA is an organization that deals with unique and pioneering technological projects

essentially routinely. Therefore, NASA deals with the concept of risk, either explicitly or

implicitly, on a daily basis. Also, safety is a top priority at NASA and it is being applied to

public, astronauts and pilots, personnel, and property in exactly this order.

ccess Starts With: Safety

NASA Manages Risk on a Daily Basis

• As a technological pioneer, NASA

has, explicitly or implicitly, evaluated,
accepted and managed risks

throughout its existence

• NASA places

(1) public safety,

(2) astronaut and pilot safety,

(3) personnel safety, and

(4) property safety

at the very top of its priorities

Figure 2
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NASA PRA VISION

Our vision is for NASA to achieve world-class state-of-the-art capability in

performing and using PRA in technical and management decisions. Since NASA is a leader

in many technical fields in which it is involved, we hope, before long, to see NASA become
a leader in this field also.

I_,o_Su¢_ess Sta_ With Safety

NASA PRA Vision

Develop and maintain a world-class in__-

house capability to perform, manage, and

use Probabilistic Risk Assessment (PRA)
methods for the benefit NASA personnel

and programs

Figure 3
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NASA PRA OBJECTIVE

NASA's objective is to develop and use state-of-the-art PRA methodology to help

ensure mission success, improve safety throughout product life cycle, improve performance

and, eventually, reduce design, operation, and maintenance costs.

_i _i_cessSta_ With Safety

NASA PRA Objective

NASA's PRA objective is to use state-of-the-art PRA

methodology to support management decisions to:

• Ensure mission success,

• Improve safety in design, operation,
maintenance and upgrade,

• Improve performance, and

• Reduce design, operation and
maintenance costs

Figure 4
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IT WAS NOT ALWAYS THAT WAY...

Some of the important techniques currently used in a PRA (e.g., fault trees) were, in

fact, developed some forty years ago in connection with aerospace applications. Early in the

Apollo project, a pessimistic probabilistic estimate of mission success, calculated to be 0.2,

strongly disappointed NASA managers. Nevertheless, NASA was not deterred by this

prediction and, later on, experience showed a much higher probability of success. Thus, the

credibility of PRA was lost for many years at NASA who proceeded with the use of only

Failure Modes and Effects Analyses (FMEA) in support of their safety assessments. It was

not until the Challenger accident and mainly after recommendations from outside experts that

NASA started again to perform PRAs.

@ rrsuccess Starts With Safe y

it Was Not Always That Way ...

• Early Apollo program estimate of mission success probability was

a disappointing 0.20.

• However, between 1969 and 1972, 6 out 7 successful Apollo

missions demonstrated 0.86 mission success probability.

• This discrepancy caused dissatisfaction with PRA at NASA and

reliance on FMEAs.

• October 29, 1986 - The "Investigation of the Challenger Accident"

by the Committee on Science and Technology of the House of

Representatives criticized NASA for not "estimating the

probability of failure of the various [Shuttle] elements.'"

• January 1988 - In the "Post-Challenger Evaluation of Space

Shuttle Risk Assessment and Management," the Slay Committee

recommended that "'probabilistic risk assessment approaches be

applied to the Shuttle risk management program at the earliest

possible date."

Figure 5
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PRA RENAISSANCE AT NASA

Between 1987 and 1995 consultants by NASA performed some fifteen probabilistic

studies. Also, the Administrator encouraged the initiation and development of an integrated

computerized PRA tool, QRAS. In spite of these initiatives, the use and credibility of PRA at

NASA did not grow significantly because some important ingredients were still missing.

_i_nSuccessStarts With Safety

PRA Renaissance at NASA

• Between 1987 and 1995, some fifteen PRA studies were

performed for NASA

• In July 1996, NASA Administrator Dan Goldin requested "a tool

to help base (Shuttle) upgrade decisions on risk.'"

• In October 1997, an early version of the NASA Quantitative Risk

Assessment System (QRAS) was demonstrated to the
Ad ministrator.

• In February 1998, Version 1.0 of QRAS was baselined.

Unfortunately, the PRA efforts during this PRA revival era have

found little understanding and usefulness at NASA because

important basic ingredients were missing

Figure 6
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ACQUIRING PROVEN INGREDIENTS FOR SUCCESS

Applications of PRA in other industries, notably nuclear, have shown that optimal

understanding, appreciation, and use of PRA techniques are not realized by an organization

until in-house personnel of this organization gain important achievements: sufficient in-house

expertise to manage and use PRA for management decisions; in-house ownership and

corporate memory of PRA methods, computer tools, data, and results; and transfer of PRA

technology to the in-house decision makers who use PRA and its results. NASA is

aggressively pursuing approaches to reach these achievements.

_:,_.,=:_:,_::_: With Safety,_,_,, _s_on ;_Success. Starts

Acquiring Proven Ingredients for Success

in-house expertise to perform, manage and use
PRAs to make sound decisions

In-house ownership and corporate memory of
PRA methods, tools, databases and results

Transfer of PRA technology to in-house personnel

and managers who are the ones who need to
manage, oversee, understand, and use PRA to

make sound management decisions

Figure 7
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RELATIONSHIP BETWEEN RISK MANAGEMENT AND PRA

Risk of interest at NASA is both of a technical nature and of a programmatic nature,

the latter being related to program costs and schedule. Risk assessment covers of the first two

elements of risk management: risk identification and risk analysis. Risk assessment can be

performed either qualitatively or quantitatively. Techniques like failure modes and effects

analysis (FMEA), fault tree analysis (FTA), master logic diagrams (MLD), event sequence

diagrams (ESD), and event tree analysis (ETA) can be used in both qualitative and

quantitative risk assessments. Additionally, statistical and actuarial techniques, as well as

simulation techniques, can be used in quantitative risk assessments. Risk assessment results,

in conjunction with decision analysis techniques, are used to formulate risk prevention and

mitigation plans. The last two elements of risk management, risk tracking and risk control

must be consistent with the organization management system.

........• Starts With Safety

_anagemen_
System

Relationship Between Risk Management
and Probabilistic Risk Assessment (PRA)

CRM M ethod

! A.._sis _

Technique

FMEA;
MLO; I_
ESD,,
ETA; _

FTA I_

Application

Figure 8
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ONE-YEAR ACCOMPLISHMENTS

Within the past year, NASA has made great progress toward reaching its PRA

objectives: (1) a policy for PRA use was drafted and is being circulated for comments; (2) a

practitioner's PRA procedures guide for aerospace applications was drafted; (3) PRA training

at NASA was conducted several times at both awareness level and practitioner's level; (4)

more than 90 NASA people were trained on SAPHIRE, chosen by NASA as its "baseline"

integrated PRA program which, together with NASA's own program, QRAS, will be used

for PRA training and PRA projects; (5) PRA information exchanges have been organized in

the form of workshops where NASA personnel can share PRA information and experience;

(6) NASA is cooperating in the field of PRA with US organizations that are experienced in

PRA, like the Nuclear Regulatory Commission (NRC), and with foreign aerospace agencies,

e.g., the European Space Agency (ESA) and the Japanese space agency, NASDA.

_ss Starts With Safety

One-Year Accomplishments

.Draft

• Broad scope

• issue this year

•Aerospace use
• Draft March '01

• issue this year

-Awareness
.Practitioners

• Jan & April '01

,SAPHIRE

• 90+ trained
• QRAS 1.6

• ASSAP: DFT

Information

• Workshop 10/00
• Workshop 6/01

• Working groups

-NRC

oESA, NASDA

Figure 9
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PRA POLICY REQUIREMENTS

NASA is performing PRA for a wide range of programs/projects ranging in nature

and detail from conceptual to detailed design, operation and/or system upgrade. Some

projects involve human participation while others do not. When the public may be affected,

NASA and federal requirements make it necessary to conduct a full-scope PRA. NASA is

also performing full-scope PRAs for all human space flights. For non-human rated space

projects, the PRA requirements are somewhat different. For programs of high strategic

importance, high schedule criticality, or high cost a full-scope, PRA is also required,

sometimes at a reduced scope if appropriate. Although PRA is recommended for all projects,

only a limited level PRA may be required for lower cost programs and perhaps none for very

low cost projects that are not human rated.

+_ _lon' Suc_ss Sta_s :With Safety

PRA Policy Requirements

CONSEQUENCE
CATEGORY

Human Safety &
ffealth

Mission Success

(for non-human rated

missions)

CRITERIA / SPECIFICS

Public Planetary Protection

Safety Program Requirement
White House Approval
(PD/NSC-25)

Human Space Flight

High Strategic Importance
High Schedule Criticality

Higher-Cost Missions (>$100M)

Lower-Cost Missions (<$100M)

(*)LEGEND:

NASA PROGRAM/PROJECT

(Classes and/or Examples)
Mars Sample Return

Nuclear payload (e.g., Cassini,

Ulysses, Galileo)
International Space Station

Space Shuttle
Crew Return Vehicle

Mars Program
Launch window (e.g., planetary
missions)

Earth Science Missions (e.g, EOS)
_pace Science Missions (e.g, SIM)

gechnology Demonstration and

Validation (e.g._ EO-1)
Earth Science Missions (e.g.,

_UICKSCAT)
_paee Science Missions (e.g.,

FIESSI)

reclmology Demonstration and

Validation (e.g., Deep Space 1)

F = Full Scope; L = Limited Scope; N= None

PRA

_COPE*

F

F

F

F

F

F

F

L
L
L

LorN

L orN

L orN

Figure 10
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QUANTITATIVE RISK ASSESSMENT SYSTEM (QRAS)

QRAS is a NASA integrated PRA computer program that is in many ways similar to

SAPHIRE and in some ways different. Like SAPHIRE, QRAS uses event trees and fault

trees to model and quantify accident scenarios. Like SAPHIRE, QRAS has the capability to

perform dependent failure (also known as "common-cause failure") analysis and uncertainty

analysis. Unlike SAPHIRE, QRAS leads the analyst through the development of a hierarchy

for hardware systems, sub-systems and components that facilitates identification of hardware

failure modes as accident sequence initiators. Unlike SAPHIRE, the scenarios in QRAS are

fist developed into event sequence diagrams (ESD), which tend to be easier to understand

and develop by system engineers who are not experts in PRA. These ESDs are then

transformed into equivalent event trees by the software, without analyst intervention, before

the sequence is quantified. Version 1.6 of QRAS was recently released and is now in beta

testing. Thus, NASA is in the enviable position of having two state-of-the-art integrated PRA

computer programs instead of one.

i_ _:n S_ccess starts With Safety

Quantitative Risk Assessment System

SPACE SHUTTLE QRAS
MODEL

] R (i, x,t) = Ro(i,x, t)Engineering Modes

todelell_ne Inlllat _j event probaidllLy Mission Timellne

Element/Subsystem Hierardly

Event SecFlence Diagram hEeken_'ng_ Event Tree (quan tificatio n}_gT_ .... _:

s=o.9 s .... ___

D_tribution (useto qu=ntifyplvo_l ovent_ [7

Figure 11
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TYPES OF RISK AND RELATED CONSEQUENCES

Risk assessments may be performed for a variety of reasons and associated

consequences. These include: safety, environmental impact, cost risk, programmatic risk,

mission success, etc. Risk assessments for these different types of applications are generally

different in scope and may require the use of different types of techniques for modeling and

quantification.

iiSuecessStarts With Safety

Types of Risk and Related Consequences

ENVIRON_N'FAL

COST

Deaths, injuries, illness

I [_ Contamination, loss of use

I _ Moneylost

PROGRAMMATIC I_

. OTHER ?COMBINATIONS ?

Mission, schedule,

etc.

Figure 12
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PRA SIMPLY DESCRIBED

A PRA generally provides the answers to three types of questions: (1) what can go

wrong? (i.e., what are the scenario initiators?) (2) how frequently does this happen? (i.e.,

what are the scenario probabilities or frequencies?) and (3) what are the consequences if

something goes wrong? (i.e., what is the scenario consequences severity?) The final product

is a description and interpretation of the risks being assessed including their numerical values

and uncertainties if the assessment is quantitative.

i6n _SUceess Starts With Safety
.. =_,_,,_3"_!_'._. _ = _: • ,=:..=

PRA Simply Described

1. WHAT CAN GO WRONG ?

O)EFLN1TION OF SCENARIOS)

INITIATING EVENT

:EVENT SEQUENCE
LOGIC :

SELECTION DEVELOPMENT

EVENT EVENT

SEQUENCE SEQUENCE
FREQUENCY

MODELING EVALUATION

2. HOW FREQUENTLY DOES IT HAPPEN ?

{SCEN_3_IO FREQUENCY QUANTIFICATION_

RISK STATE_H_NT

3. WHAT ARE THE CONSEQUENCES ?

(SCEN_J_IO CONSEQUENCE QUANTIHCATION)

RISK

INTEGRATION

CONSEQUENCE

MODELING

Figure 13
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EXPECTATIONS FROM A PRA

The expectations from a PRA are generally assistance in: preventing or mitigating

mishaps, mission success or performance enhancement, safety improvements and/or design,

operation, and maintenance cost reductions.

_iOn Success Starts With Safety

Expectations from a PRA

• Mishap prevention and mitigation

• Mission/performance success enhancement

• Safety improvements throughout life cycle

• Design/operation cost reduction

Figure 14
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SCENARIO-BASED PRA MODELING APPROACH

The scenario-based PRA modeling approach for safety applications can be

diagrammatically shown to consist of: technical or programmatic information collection and

analysis; identification of initiators with techniques like the master logic diagram; event

sequence development; system failure assessment using fault trees; and evaluation and

analysis of the results.

on!Success ,Starts_:,_-_,._=_ _:,_-_ With Safety

Scenario-Based PRA IVlodeling Approach

RESULTS

FAULT TREE DIABRAM

Figure 15
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ELEMENTS OF SCENARIO-BASED PRA

The quantitative scenario-based PRA starts with objective definition and proceeds

through the following general steps: system familiarization; initiating events identification

and selection; scenario, or event-sequence modeling (e.g., using ESD or ETA); failure

modeling (e.g., using FTA), quantification and integration of the scenario risks; uncertainty

analysis; and interpretation of results. Scattered throughout the PRA process is data

collection and processing as necessary. Depending of the analysis requirements, sensitivity

analyses and/or importance ranking analyses are also performed.

_SuCcess Starts With Safety

Elements of a Scenario-Based PRA

Initiating

Events
Identification

"ET

][_ Scenario, or
-:vent Sequenm

Mo_eli_o

"ET

Data C_llectian andAn_i_Sis

Full application of a scenario-based PRA
involves a number of steps shown here
diagrammatically to illustrate the process
that starts with the definition of objectives
and ends with the interpretation of results

]_ QuantJf_cati°n[
Failure _and; ]

Modelin9 ' |ntegration I

"IT

l ai °°°°-°|.,,
W

Seris tiVity ] C_]An_iiysls

I ImportanceR_nking

_7

Figure 16
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RISK SOURCES IN SAFETY RISK ASSESSMENT

In a safety risk assessment, the risk contributors can be either, all or combinations of

the following types of sources: hardware failures, "external" events or acts of nature, human

error, or errors due to organizational structures or practices which are globally called

"organizational factors." These risk sources are listed here in order of increasing modeling

complexity and of decreasing maturity and accuracy in the methodology, modeling and

associated data quantity and quality that are generally available to perform risk assessments.

Not listed in this diagram, but also very important for NASA applications, are software

failures that are currently not being modeled very well because of general lack of data and of

sophistication in the analysis methods.

_)SUC_SS Sta_s With Safety

Risk Sources in Safety Risk Assessment

Hardware
Fai|ures

mg

Figure 17
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MAJOR NASA PROGRAMS NOW USE PRA

The Space Shuttle and the International Space Station are two major human rated

NASA projects for which PRAs are being currently performed. The first one is primarily

performed to assist the space shuttle upgrade program. The second one is performed to assist

construction, assembly and operation of the international space station, one of the most

challenging scientific and engineering challenges of our time. PRA has been used to assign

safety goals to the space shuttle program.

Si!o_¢cess Starts W=th Safety

Major NASA Programs Now Use PRA

Space Shuttle Development Roadmap

Goals and 197 102 107 112

Objectives / ........... ' .....

fhgbtS , ,

International Space Station PRA

• 1999-- The NASA Advisory Council
recommended, the NASA Administrator
concurred, and the ISS Program has
begun a PRA.

- The modeling will be QRAS-
compatible.

- First portion of PRA (through Flight
7A) - delivered in Dec. 2000.

Figure 18
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MARS SAMPLE RETURN MISSION

Because it is unknown what types of health or other risks a sample from Mars could

pose upon return to Earth, NASA's Planetary Protection Program has preliminarily assigned

the probability of one in a million or less that such a sample will contaminate the Earth. This

means that the sample should have less than one in a million chance of being opened in an

uncontrolled environment upon or after re-entry in the Earth atmosphere. This type of goal

cannot be satisfied by any assessment other than a probabilistic risk assessment (e.g., not by

any deterministic safety assessment).

_b¢ess :Starts: With Safety

Mars SampJe Return Mission

• Mission must meet a Planetary Protection Program (PPP)

criterion of <10 .8 probability of Earth contamination upon

return of sample

• PRA is used to evaluate mission compliance with the PPP
criterion

Figure 19
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NASA'S UNIQUE PRA METHODOLOGY NEEDS

Although NASA is acquiring or adapting PRA methods, software and data from

applications in other industries to the extent possible, NASA PRA applications have some

unique features that require special needs and special attention. They include: diversity of

project application; multi-phase treatment; unique types of initiators; unique environments;

unique types of adverse consequences; special treatment of human and software reliability;

etc. These capabilities need to be developed or acquired as soon as possible.

t ,i_!_'_ceSSl Starts With Safety

NASA's Unique PRA iVlethodology Needs

• Broad range of programs: Conceptual non-human rated science
projects; Multi-stage design and construction of the International
Space Station; U pgrades of the Space Shuttle

• Risk initiators that vary drastically with type of program

• Unique design and operating environments (e.g., microgravity
effects on equipment and humans)

• Multi-phasing approach in some scenario developments

• Unique external events (e.g., micro-meteoroids and orbital debris)

• Unique types of adverse consequences (e.g., fatigue and illness in
space)

• Different considerations for human reliability (e.g., astronauts vs.

other operating personnel)

• Greater importance of software reliability

• Specialized database needs

Figure 20
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END STATES FROM ISS PRA

Examples of unique PRA end-states can be seen in the International Space Station

(ISS) PRA: loss of station; loss of crew; evacuation end states, and other undesired end states

like loss of module; loss of system; or collision between a US or a Russian logistic vehicle
and the ISS.

_ '5 '_ _
i_n _C_ss Starts With Safety

_,_,_,

End States from ISS PNA

• Station and Crew are Functional

(OK)
• This end state signifies that the

station is still working with the

flight rule constraints

• Critical End States

-Loss of Station and Crew (LOS)
• Catastrophic loss of the station and crew

-Loss of Crew (LOC)
• Resultant loss of a crew-member

• Also includes the inability to evacuate the
station due to evacuation end state and the

unavailability of either Soyuz or Orbiter to

perform such a task

-Evacuation End States (EVAC)

• Emergency Evacuation

• Flight Rule Evacuation

• Medical Evacuation

• Other Undesired End States

(OUE)

-Loss of Module (LOM)

• The shut down of any pressurized
module as dictated by flight rule or as
result of MMOD

-Loss of System (LOSys)
• The loss of either US or RS distributed

systems

• Loss of a function such as

- ability for Orbiter, Progress, or Soyuz
to dock

- ability to reboost

- insufficient 0 2or N2 reserves

-Collision (COL)
• impact of the Orbiter, Progress, or Soyuz

Figure 21
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INITIATING MEDICAL EVENTS FROM IS PRA

The ISS PRA also demonstrates the need for special types of initiating events that are

normally not dealt with in ground based systems or facilities. Medical initiating events due to

illness or adverse environment in space are examples of unique types of initiators that may be

encountered in NASA PRA applications.

",_ _ _';_ _,

_;,,_S_:ion;SucceSs Starts .With Safety

initiating Medical Events from ISS PRA

Medical disorders quantified are for "severe" injuries or

illnesses only

- those that would normally require hospitalization on Earth

Medical categories are:

- Circulatory

- Dermatology

- Digestive

- General Internal Medicine

- Genitourinary

- Infectious Disease

- Neurology and Psychology

- Respiratory

- Trauma and Poisonings

Figure 22
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ENERGETIC HAZARD ESD EXAMPLE (ISS PRA)

Another example of a unique type of initiator in a NASA PRA is impact with micro-

meteoroids or orbital debris. Such impact with ISS systems and components can lead to very

severe consequences to the space station and its personnel. Equally severe consequences can

result from this type of collisions with ISS personnel performing extra-vehicular activities.

NASA has a number of computational models and tools for conducting probabilistic

assessment of these types of collisions and associated risks to hardware and ultimately to ISS

personnel.

.... _' " _Ss:Starts With:Safety

Energetic Hazard ESD Example (ISS PRA)

Micrometeoroid and Orbital Debris

Did debris

penetrate a
module?

I

Impact No

Probability +

PNP

Probability values
based on work done

by SN3 Space
Environment

NO

Gan the crew

stay on board?

No

_Yes @

Figure 23
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GOALS FOR THE FUTURE

Our vision for future PRA use at NASA shows not only a world-class capability to

perform PRA for all applications for which this method is appropriate but also the creation at

NASA of the right culture and environment to make the best use of PRA in all or most

management decisions that impact mission success, performance improvement, safety
enhancement and costs.

_ ............................ Y_+_,,_;iN ,Qn_SUccess StartsW=th Safet

Goals for the Future

• Risk awareness enhancement

• PRA/QRA training of project managers,

astronauts and operational personnel

• Agency-wide risk informed culture

• PRA to become a way of life for safety and

technical performance improvement and
cost reduction

• PRA for readiness review support

• Risk-informed management process

Figure 24
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"LOSSES TO SOCIETY AND OPPORTUNITIES FOR COMPANIES"

At the heart of "non-deterministic" methods is the inclusion of variation in

engineering calculations. Unlike engineering calculation examples in textbooks,

demonstrating exact dimensions, material properties, and boundary conditions, these

calculations are effectively made inaccurate by variation. Given variation in input

conditions, answers resulting from the associated engineering calculations will also exhibit

variation. The certainty desired from deterministic methods implodes because it excludes

variation and is replaced by the uncertainty of non-deterministic methods. Embedded in this

presentation is an introduction to efforts underway Boeing to foster a greater degree of

awareness of variation in everyday activities. The title of this presentation is a reference to

the opportunities that exist to "reduce loss to society" when companies develop a deeper

appreciation of variation, including its sources (connections and systems) and its

consequences.

"Losses to Society
and

Opportunities for Companies"

Training Workshop on Non-deterministic Approaches

and Their Potential for Future Aerospace Systems

May 30-31,2001

Presented by

Dr. Bill Bellows
(william.j.bellows@boeing.com)

The Boeing Company

Canoga Park, CA

Figure 1
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AGENDA

This overview presentation will include a statement of the objectives, a review of

assumptions, a simple systems thinking exercise involving woodworking, an introduction to

investment thinking, and a vision of the potential of "better thinking" about variation,

systems, psychology, and the theory of knowledge.

u Objective

Assumptions

Cutting Wood

® Investment Thinking

mThe Role of Better Thinking

Bill Bellows
_'OE'iAYO

Figure 2
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OBJECTIVE

The material presented in this overview is an accumulation of 15 years of reflection

on management theories contributed by Charles Kepner, Benjamin Tregoe, W. Edwards

Deming, Genichi Taguchi, and Peter Senge, among many others. My first exposure to these

"change leaders" was the problem solving and decision making analyses of Drs. Kepner and

Tregoe, to be followed soon after by the work of Dr. Taguchi and Dr. Deming. In repeated

applications involving highly visible problem resolution activities, the potential energy of

Taguchi Methods became more and more evident. The early applications also revealed the

narrow focus of these applications - to fix or repair products and processes. An obvious

application pattern was developing. In borrowing from the concepts of Dr. Deming, a theory

was developed to explain why this costly application pattern was widespread across

industries. Dr. Deming's management theory provides an explanation for how organizations

can develop higher levels of working together. The objective of this presentation is to offer a

view of the potential energy offered by the synergetic linkage of these varied management
theories.

Introduce the potential energy of
integrating the management theories

of

Dr. W.

II Dr,

Edwards Deming

and

Genichi Taguchi

and others,..

Bill Bellows

Figure 3
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3-D DIFFUSION EQUATION

My engineering background has its roots in heat transfer analyses, solving this partial

differential equation to establish the temperature distribution of an object under a variety of

boundary and initial conditions. The terms of the equation include a "diffusion" component

on the left side to represent the effects of three-dimensional heat conduction. The "Q"

component is the so-called energy "source term", included as an indication of the magnitude

of "energy generation" within the object. The right side of the equation is the sole time-

dependent term; an indication of temperature changes over time. As will be shown in the

closing chart, my awareness of these three terms has provided general guidance in the

diffusion of better management theories.

ll'l_

of Heat

O 2_/0 X2 + O 2_[ O yZ + O 2T/O Z2

+Q'_'/k = 1/c_OT/Ot

Bill Bellows _. BO_'ff/IVD 4

Figure 4
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QUALITY LOSS

Dr. Taguchi has uniquely defined quality in terms of "minimizing loss to society".

This presentation will offer a view of ongoing activities at The Boeing Company to promote

better thinking as a means to achieve better doing, which can be translated into minimizing

losses to society and Boeing. These efforts involve a focus on variation management, seeing

systems, and investment thinking.

Quali Loss

"Quality is the (minimum of) loss a

product causes to society after
being shipped, other than losses
caused by its intrinsic functions. "

Dr. Genichi Taguchi

Source: Introduction to Quality Engineering, Dr. Genichi Taguchi

Bill Bellows _..,4Vj_,LeT/I¢_

Figure 5
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PERCEPTION & THINKING

Tom Johnson, a professor of Quality Management at Portland State University, offers

as a ponderable that "what we see" is a reflection of "how we think". As a simple example,

consider the response of a parent upon reading their child's report card. Are the grades, low

or high, an indication of the student, alone? Or, might it be possible that the grades are an

indication of the "education system" in which the child resides, a system that includes the

student, the teacher, the parents, and the hiring practices of the local board of education, to

name a few inter-dependent parts. How the parent responds to their child's report card will

reveal their understanding of the size of the child's education system and the degree of

interconnectedness of the components. Likewise, in a factory setting, the quality of a duct

weld is a reflection of the welding system in which the welder resides.

&

"How the world we perceive
works depends on how we think.

The world we perceive is a world

we bring forth through our thinking.
fl

H. Thomas Johnson

Bill Bellows _._BS_/_"JNO 6

Figure 6
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UTILIZATION OF THINKING

In the spirit of thinking about interconnectionsand systems,consider the logic of
routinely askingquestionssuchas"Where arewe going?" Wheredoesthis fit in?....Where
did this come from?.... What is my role?" and "What is this part of?" To ponderthem
routinely is to be remindedof a generalpatternof inter-dependencethat surroundsall of us.
The lastquestion,"Whereshouldwe invest?"exploresthe implicationsof systemsthinking,
whencoupledto economics.The conceptof connectionsis fundamentalto recognizingthe
relationshipsbetweenupstream,local,anddownstreamconditions.

of

mWhere are we going ?

mWhere does this fit in ?

Where did this come from

[] What is my role ?

[] What is this part of ?

[] Where should we invest ?

9
i

Bill Bellows

Figure 7
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ASSUMPTIONS

From my reflection on a 15-year review of management theories, I would like to

propose three progressive assumptions; 1- A better way to operate an organization is to invest

resources with the ability to delight customers, 2- Better investment results from discovering

opportunities to invest, and 3-The discovery of opportunities for investment is limited by

how thinking is conditioned.

Assum

mA better way to operate an
organization is to invest resources
with the ability to delight customers

mBetter investment results from

discovering opportunities to invest

mThe discovery of opportunities for
investment is limited by how thinking
is conditioned

Bill Bellows

Figure 8
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WHAT IS NEEDED?

My conclusion is that we are in need of better thinking, that is - "thinking that

promotes better discovery." Discovery of opportunities, discovery of connections, discovery

of systemic effects, to name a few forms of needed discovery. If one cannot see connections,

then one can see only parts. As such, our lives and the world we live in are viewed as sets of

fragmented pieces. Without a sense of connections, we are resigned to being reactive. We

tend not to "see things coming" and, consequently, experience problems without warning.

Adding to this scenario of disconnections, we then act to impart blame to elements of the

system instead of to the system itself. Such blame may be imposed on the student in a

classroom or on the welder on a shop floor. If only we could see connections, we could

anticipate. Such anticipation provides early warning of impending trouble and the ability to

pro-act. Better thinking offers the ability to uncover these opportunities for investment.

What is _

Bill Bellows _. ,SP, d_,E'l/Ibc, d_ 9

Figure 9
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QUESTION

Consider the simple question, "What is this part of?" Imbedded in this question is an

explicit reference to a connection. The systemic thought is revealed by the concept "part of",

as opposed to "part". Without the "of", we could only inquire about the part, as in the

question, "What is this part?" Given this inquiry, the connections would be lost as we return

to a wofldview of "fragmented pieces".

u What is this a part of ?

Bill Bellows 10

Figure 10
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WATER AND ROCK LOGIC

In reference to the "from-this-to" sequence, questions such as "What is this part of?

Where did this come from?" and "What will this lead to?" represent the essence of

understanding relationships and inter-connections. The thinking revealed by these questions

has been termed "water logic" by the noted "thinker" and author, Dr. Edward de Bono. By

contrast, references to events, parts, and pieces, are termed "rock logic". To view the world

with "rock logic" is to view it in the form of an "exploded view" - parts without connections.

To view the world with "water logic" is to view without seeing parts. Such a view reveals

the world to be a pattern of relationships and linkages.

Water and Rock

Water

Logic

® What is this a part of ?

[] Where did this come from ?

[] What will this lead to ?

from ?

Rock = Event focussed

Logic [] Part focussed
[] Piece focussed to ?

Source: Water Logic, Dr. Edward de Bono

Bill Bellows _RSEINO
11

Figure 11
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QUESTION: CLrFTING WOOD

To better appreciate the implications of water and rock logic, of parts and

connections, consider the routine of cutting a piece of wood. Taking a step back, imagine

your actions associated with a woodworking project - all in the confines of your garage.

Your project is nearing completion as you search for a short piece of wood. The closest

piece you can find is a tad too long, necessitating the need to make it shorter. In rapid order,

you measure the length that is required, mark the wood to cut it, and get ready to start the

electric saw. Before the piece is shortened, I look at the top face of the piece to see "how

many lines are drawn completely cross the face, top to bottom?"

"How many lines would you draw?"

ng

Given a piece of wood that will be cut
into 2 pieces ....

I
how many lines will be drawn across
the top face before the cut is made ?

Bill Bellows 12

Figure 12
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QUESTION: CUTTING WOOD

Hopefully, to no surprise, the most frequent answer (with bare exception) is "one

line". The term I use for the thinking that results in this answer is "l-line" thinking.

Wood

target

Bill Bellows _... ,_TO,&_'L4_¢_ 13

Figure 13
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QUESTION: CUTTING WOOD

Is "1 line" the correct answer? If not, "What other answer could there be?" While it

is not immediately obvious, other answers might be "2 lines" or "3 lines", if not more. The

terms I use for the thinking that results in these answers are "2-line" thinking, "3-line"

thinking, and so on.

What is a possible explanation for the "1 line" answer? Surely, it is but one of many

possible answers. Could it be that we would draw one line out of habit? Why is the habit not

"2 lines"? I would offer that the "1 line" answer is an indication of a strong intuitive sense of

water logic - knowing what the piece of wood is "part of", knowing where "it came from",

and knowing where it "will lead to". Such a perspective is likely when one is involved in a

home project and connections are visible as well as conscious. How visible are the

connections in a work setting, where the connections are less visible?

Cutting

target

Bill Bellows
B'Ok"JAi¢_

14

Figure 14
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RELATIONSHIPS

I would like to now offer an explanationfor the habit of "1 line" thinking when
cuttinga pieceof woodfor ahomeproject(step1). Considerthex-y axesshown,with apart
characteristic as the horizontal axis and the "cumulative negative impact to others
downstream"(steps2 and 3) as the vertical axis. This "negative impact" to others is
reflective of Dr. Taguchi's concept of defining quality as the "minimum value of loss
impartedto the society", Could it be that we intuitively appreciatethe implicationsof "loss
imparted"andactto minimize this loss(this impact)whenwearethenextpersonin theflow,
asif receivingour ownwork? Might weactwith asenseof waterlogic? I believeso. Could
it be that we arenot asparticularand will not focus on target,but ratheron "meetingthe
requirementsof a tolerance"whenwearenot thenext personin theflow? Without thesense
of aconnection,might we actwith "rock logic" and defaultto a part perspective?I believe
SO.

p s

.-.,,..p

Cumulative

Negative

Impact to
Others

Downstream

Bill Bellows
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INVESTMENT THINKING

A stitch in time that saves nine. An ounce of prevention that is worth a pound of

cure. What these two adages have in common is an awareness of connections - a sense of

water logic. Notice also that the pro-action, the stitch and the ounce, are far cheaper than the

nine stitches or the pound of cure. To act in this manner, with a consciousness of

connections, is to practice the economics of "investment thinking".

The general attributes of investment thinking are an allocation of resources (time,

money, etc.) to prevent a greater expenditure of resources, or to cause a greater gain in

resources. Both scenarios are heavily dependent on water logic. Lacking consciousness of

connections, as in a rock logic view of activities, such investment opportunities would be

overlooked. Yet another reminder of the need for better thinking.

J Seeing connections

= Spending, to save $

mSpending time to save time

mSpending resources to save resources

a Examples

college education, roof repair, time with
kids

Bill Bellows _.._p'd_c'l/V'O 16
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PICKING" UP NAILS

Spending time to save time, as in picking up nails to prevent the flat tire. Another

example of investment thinking. To do so is to "minimize loss to society" and be reminded

of Dr. Taguchi's concept of quality. Another reminder that the discovery of "investment

opportunities" is limited by our ability to see connections - to appreciate water logic.

Up Nails

Spending time (yours)
to

Save time (others)

_g Loss to
S_e_

Bill Bellows 17
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SEEING ORGANIZATIONS AS SYSTEMS

In 1950, Dr. Deming was invited to Japan to meet with engineers and executives from

hundreds of companies. As an introduction to an 8-day course in quality control he

introduced his audience to the concept of "seeing organizations as systems". He encouraged

them to see their organizations with a sense of flow, of water logic, and be mindful of the

continuity in the connections between the activities.

Organizations that practice investment thinking on a continuous basis will generate a

continuous series of returns of resources in exchange for a smaller allocation of resources.

Organizations as Systems
Design

4----- and 4-- Consumerresearch

_...i redesign
_/ Consumers

Suppliers of /4
materials and

equipmentReceiptandA._ test of Distributi_' _ /4

B "_ mater!alSProducUon, a_e_l_l¥, _ion / _ ,,,._,_11_

//
D

Tests of processes
machines, methods,
costs

Source: The New Economics, Dr. W. Edwards Deming

Bill Bellows _. RS,_"JAVO
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UTILIZATION OF THINKING

A closing reminder of the need to routinely ask questions about connections, to

practice the principal of water logic. To do so is to prompt investment-thinking decisions.

of Th

Where are we going ?

mWhere does this fit in ?

mWhere did this come from ?

What is my role ?.

mWhat is this part of ?

Where should we invest ?

Bill Bellows
_,. B'_',EJA¢O

19

Figure 19
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"BHOOMERANG KHARMA"

A reminder of what might happen when connections are not antici 9ated, as when one

acts to focus on the parts and underestimate inevitable connections.

Bill Bellows _,,..__d_'._'l,#_ 20

Figure 20
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THE ROLE OF BETTER THINKING

In keeping with the theme of water logic, I offer a theory on the role of better

thinking. I believe that if we act to "increase awareness on thinking" (through education

programs or mentoring activities), and then we will "change the way we behave" (when

connections are better understood, the actions that trigger undesirable results will be altered).

Subsequently, we will "change the way we work together" (as when we pass on to others

only what we would pass on to ourselves). In turn, we will then "change the way we run the

organizations" (to treat others as we would treat ourselves is to change the operation of the

organization." Such behaviors will have a reinforcing effect on "increasing awareness on

thinking", leading to higher and higher levels of system consciousness and "working

together".

The Role of Thi k'ng

o

Increase awareness on thinking

_ Change the way we behave ,_:

_,_ Change the way we

___ work togetherChange the way we run _

our organizations

Bill Bellows
B'gETAI¢O
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3-D DIFFUSION EQUATIONS

Dr. Deming's last book, The New Economics, introduced his refinements on his

evolving theory of management. He termed this management theory "the system of

profound knowledge", or SOPK as an acronym. This system includes four parts, all related

to each other. The parts include an understanding of variation, an appreciation of systems, of

psychology, and of the theory of knowledge. Deming stressed the need to connect the pieces

as a system.

As a complement to the partial differential equation that governs the diffusion of heat

within an object, consider the corresponding equation that would represent the diffusion

model for profound knowledge (PK) within an organization. In this case, the "Q" term

represents an education system that generates PK within the organization. Such an education

system has been developed with The Boeing Company to foster the "better thinking" that

will lead to reduced "losses to society" and better "opportunities for companies".

sion Eq

of Heat

0 2T/0x 2 + _) 2T/() y2 + 0 2T/_) z 2

+ Q'"/k = 1/c_ _ T/_ t

of Profound Knowledge

2PK/0 x2+ c32pK/oa yZ + 02pK/c3 z2
+ Q'"/k = 1/_ 0 PK/0 t

Bill Bellows _._,SPd_,_'l/I¢'O
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Outline

. HistoricalModelforTechnicalEvolution

• CurrentMaturityof NondeterministicApplications

• FutureImplementationTrends

3

_'-'4_O'¢¢'lAIrO 3

Figure 3

HistoricalModelfor
Technical
Evolution

Figure 4
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Both Science & Probabilistic Methods Seek to Model
the World Around Us

Figure 5

5

Both Science & Probabilistic Methods Seek to Model
the World Around Us

O ductJveinductive

Figure 6
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BothScience& ProbabilisticMethodsSeekto Model
theWorldAroundUs

• Detect Phenomena

* MeasurePhenomena

• ModelPhenomena

BO, EI,/_O 7

Figure 7

Striving to Measure Time was a
of the Earliest Civilizations

Egyptian

Shadow

Clock

2000B.C. 4200B.C,

2000 B_C.

4000

B.C,

Figure 8
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Aristotle's Theories of Mechanicswere Constrainedby
Limitsof First Crude Clocks

Clepsydra 325 B.C. 5 Min/Hr Accuracy

Egyptian Greek
Shadow Water

Clock Clock

T=0

Velocity= 0

@

4000 300
B.C. B.C.

Figure 9

9

Aristotle'sTheories of Mechanicswere Constrainedby
Limits of First Crude Clocks

Early _,a_r do:k

Clepsydla 325 B.C. 5 Min/Hr Accuracy

Egyptian Greek
Shadow Water

Clock Clock

! t
4000 300
B.C. B.C.

T>>O

Velocity1= v

Velocitys= V

Figure 10
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RenaissanceMechanicalClockmakingAdvancements
EnabledNext Steps in Scientific Understanding

Egyptian
Shadow

Clock

4000
B.C.

ii__ .̧............._i_

Weight-driven _,
verge-and-foliot _ : ,, ,,
escapement _ _"

mechanism _4_
1350A.D.

Still5Min/HrAccuracy _ #_

PortableSpring driven Clock

enabled Ship Chronometers
1500 A.D,

Greek Verge & Spring
Water Foliot Driven
Clock Clock

__ I I
I I " - -

300 1350 1500
B.C, A.D. A,D.

]1

Figure 11

GalileoadvancedTheoryfor both Timekeeping&
Falling Bodies

7>>0

O 1883mode,ofOa,i,eo' i1637 pendulum

_ _ escapement design

VelocitY1= VelocitYs= V t

Egyptian
Shadow

Clock

4000
B.C,

Greek Verge & Spring Galileo
Water Foliot Driven Pendulum
Clock Clock

Aristotle- 300 1350 1500 Equality1637
Heavier falls B.C. A.D. A.D. o/Fail A.D.

Faster Rates

Figure 12
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ContinuedTimekeepingAdvancementsDrove
Refinementof Falling Body Equations

Christiaan Huygens improved Galileo's
Pendtdum Escapement to achieve

accuracy of 1 sec/3 Hrs by 1730

Accut_Cy

Egyptian Greek

Shadow Water

Clock Clock

4000 Aristotle- 300

S.C, Heavier fails B.C,

Faster

5 Min/Hr 1 SecJDay 1 Sac/10 Yr

Verge & Spring Galileo Huygens QuartzCesium

Foliot Driven Pendulum Pendulum Crystal Atomic]

-4 c'ic 'h7
1350 1500 Equality1637 1730 1930 2000 I

A.D. A.D, of Fall A.D.Grav A.D. Air A.D. A.D. I

Rates Variance Resistance I

Figure 13

Moore's Law hasApplied in Principleto Improvements
in Timekeeping& FallingBodyTheories

Force gravity" Force Aerodynamic Air Resistance" Force Velocity Air Resistance

- ForceAir Density" Force Air Temp" Force Air Humidity" Force Altitude-FOrCe Corioli!Instantaneous
Acceleration m

BB=

due to Falling Mass

Accuracy

Egyptian

Shadow

Clock

4000

B.C.

IF_I SecJ 1 SecJ

5 MirVHr 1 Sac/Day 10Yr tO T Yr

Greek Verge & Spring Galileo Huygens QuartzCesiunn

Water Foliot Driven Pendulum Pendulum Crystal Atomic:

Clock Clock Theory Clock Clock Clock

Aristotle- 300 1350 1500 Equality1637 1730 1930 200(

Heavier fatls B.C. A.D. A.D, of Fall A.D. Gray A.D. Air A.D. A.D.

Faster Rates Variance Resistance

_..N_'EJAI¢_ 14

Figure 14
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Current Maturityof
Nondeterministic

Applications

Figure 15

The Originof Modern ProbabilisticTheory Dates
Back to the 17th Century

• GamblingTriggeredFirstApplications

- Ardentgambler,Chevalierde Mere,consultedthe
FrenchmathematicianBlaisePascal(1623-1662)
regardinga problemabouta gameofchance

• KarlGauss(1777-1855)found applicationsin field theories

- Gravity

- Electricity

- Magnetism.

• PierreLaplace(1749-1827)reliedonprobabilisticapproach
indevelopmentoftheoriesfor puremathematics

Pascal's Gauss &

Theory of Laplace

Pr©ibability Applicationsl

1650 1800

. Ex_aeted from Prof. PaulWirsching's "Probabilistic Design" class note

L-EO_='JNO i

Figure 16
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Again... A Long Pauseuntil the Renaissance

+ Serious interest in the systematicapplicationof
probabilisticand statistical methodsto structuraland
mechanicaldesign did not develop until the mid-1950's,

* A paperwrittenbyA.M.Freudenthalentitled. "The Safetyof
Structures"appearedinthe1945proceedingsoftheAmerican
Societyof CivilEngineers.

• Thepurposeof thispaperisto analyzethesafetyfactor in
engineeringstructuresinordertoestablisha rationalmethod
of evaluatingitsmagnitude.

Pascal's Gauss & Safety

Theory of Laplace Factor

Prolbabllity Applicationsl Approach[

I I I
1650 1800 1950

. Ex'a'actedfrom Prof. PaulWirsching's '=ProbabilistJcDesign" class note f2_ _m_.dT_FjAV, Oy_L 1 7

Figure 17

In 1960's, ProbabilisticDesignTheorySeemed
IntractableMathematicallyand Numerically

• Littledata were available Strength Dist.,R

• Modelingerror was unknown ? "

• Highlycomplex System structuralsafety analyses st

• Challengesattacked in early 60's

- Turkstra presented structuraldesign as a problem of decision making under
uncertaintyand risk

- Lind,Turkstra andWright definethe problem of rational design of a code as
finding a set of best values of the loads and resistance factors

• In t967, Cornell conceiveda secondmoment format & demonstrated that safety
index requirement led to a set of safety factors on loads and resistance.

Pascal's Gauss & Safety First

Theory of Laplace Factor Structural

Protbability Applications Approach Codes

!
1650 1800 1950 1960's

. F.x_actedfrom Prof. Paul Wksching'= "ProbabltietJ¢ Design" class note _'-Ai_'47'Lc'`/'AIf_ is

Figure 18
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Problem of Invariance Was Found for the Second
Moment Format Method and Resolved in 1970's

* Secondmoment format based reliabilitydesign became widely accepted although
a firm logical rationalewas not yet demonstrated

* Ditlevsen and Lind independentlydiscovered the problem of invariance in 1973.
Cornelrs indexwas not constantwhen certainsimple problemswere
reformulated ina mechanicallyequivalent way.

* in 1974, Hasoferand Lind initiated the era of modernprobabilistic design theory
by defininga generalizedsafety index that is invariant to mechanical formulation.

* Several codes developed & implementedin short succession, and routine
proceduresdocumented in guidelinereports

- ComiteEuropeandu Boron, 1976; Construction industry Researchand
informationAssociation, 1977;Canadian StandardsAssociation, 1981

* Uniform BuildingCodeaccepted Probabilisticsfor CivilEngineering applications

Pascal's Gauss & Safety First Invariance

Theory of Laplace Factor Structural Problem

Probability Applications Approach Codes Resolved Move, Clip(MPEG)

1 1 1
1650 1800 1950 1960's 1970's

• Ex_acted from Prof. PaulWirsching's "Probabilistic Design" class note (_AV_TAFJAI/_ ='
19

Figure 19

USAF& Dr.JackLincolnuseProbabilisticRiskAssessmentof
Durability& DamageToleranceto RecertifyFleetLifetimes

Pascal's

Theory of

Prc

Reliability,R(t)
' ............ _P

'-- Updated
' "last Reliability

Rrni n _e

*Time (t)
T.DEt Train

• Design must maintain the minimum reliability level, Rmin

• Design must exceedthe minimum life expectancy, Tm_n

Without NDE,total expected iife, T,_el(where Tli_e1< Tm_n)

With NDE,total expected life, T_f_{whereT,_ > Tm_. )
Gauss & Safety First Invariance

Laplace Factor Structural Problem

1650 1800 1950 1960's 1970's

, Ex_acted from Prof. PaulWirsching_=;"Pr o_lbilis_¢ Besign" class note

Probability

Distribution

A__re NDE I=

Crack Size

_..Ai'OxJAr#'47 2o i

Figure 20
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GE Six Sigma Cost and Benefits

25O0

2OOO

1500
C
O

-- 1000

50O

-5OO

Mostly variable cost productivity and asset utilization

• Up front investment and staying power

• Significant impact on the bottom line

• Exlr=cl=dfromMr.RermanR,Kuchar'==gesignlerS_x$1gr_:N_gete_lnb_ DesignatGE_

Bg'L='j'/liqO Z

Figure 21

PADS Use In NASA Programs has Improved System Weight &
Reliability, Analysis Cycle Time, Test Cost and More

i EELV Cryogenic I Mir/Shuttle Docking

iUpper Stage Design I Capture Probability

il; iii it

Reduce Overall

Weight by 20%
Pascal's

Theory of

Proiability

1650

Reduce Analysis Cycle Time
and Testing Cost By 10 times

Gauss & Safety Rrst

Laplace Factor Structural

Applications Approach Codes

1800

NRA 8-12 ]

i8' Tank Redesignj

Reduce 8' Tank

Weight by 17%
Invariance Beet Common

Problem Lifetime Tools

Resolved Certification Available

1950 1960's 1970's 1980's 1990's 200

Figure 22
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Future
Implementation

Trends

Figure 23

Where DoWe Go FromHere?

The Vision of ProbabilisticApproaches

From

• Traditionalsafetyfactordesign
• Extensivedesignrework
• Productperformanceassessedby

"build andtest" _\
• Performanceandproducibility

problemsfixed afterproductinuse
• Functionallyserialproduct

development
• Safety/Quality"tested in"

• DevelopedbyEngineers,Foruseby
Engineers

• Reliableproducts_re Achievable
• RevolutionizeBusiness& Industry

• Exl_cted/modlfie dfrom Mr, Norm_ I_ Kuohar'e "Deelgn for Six Sigma: Non-Deterministic Design at GE"

Reliability-baseddesignoptimization

Controlleddesign/randomparameters
Productperformancemodeledand

simulated/calibrated
• _ for robustperformanceand

• producibility
Functionallyintegratedproduct

development

i Safety/Quality"designed in"
DevelopedbyEngineersfor usebyNon-

Engl'neers .:- .... _,_

Figure 24
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NASA IncorporatesNon-DeterministicApproaches
into TechnologyPushfor Large ScaleApplications

Technology Development StrategyISE

lnlell_e_t Senthes£_ Environment

ISE Software Products

• £xl_ted f_ Dr. Jeny ['bxlstRr "R_olut_niz_ NASA_ Engineering aid Scl_ Pr_"

Figure 25

12 Steps in the ConsensusBuilder ©

Decisionmaking Process

Copyright David G. UIIman, Design & Decision Support

1: Decision-makerrisk

2: Organizational risk

3-7: Envisioningrisk

6: Ideationrisk

9-11: Evaluation risk

1,2,12:Strategic risk

12: Realizationrisk

Figure 26
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OpportunisticApplicationsare Everywhere

• Potentialto Identify Most ProbablePoint and Standard Deviation is
inherently useful to any business

• TechnicalApproaches are neededin qualitative fields to foster
transition from Inference to Deduction

• Boundariesare self-imposed

• Near-termopportunities need more attention

- Costing & Pricing

- Scheduling

- Insurance

- Design of Mission,Operations & ManufacturingFlows

- Law

_ _KR_JA _'O 27

Figure 27

Success of ProbabilisticApproach Requires
Practitionersto Pushthe Application Envelope

Not Yet

Possible

Computational

Difficulty

Low

Low
Quality or Reality of Design

C

High

infinite number
of deterministic

factors

• FJdracte_mo_l_ Irom Mr. Norman R, IOJchar's "Desl gn for Six Sigma: No_Get_mlnisUc Deign at G_'

_ --Ar41A'='jAv'_ z8

Figure 28
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Next GenerationProbabilisticApproacheswill be
Powerful& WidelyApplicable

Computation and analytical methods

• Developprobabilisticmethodsand parallelcomputingalgedthms
for largecomplexsystem optimization:

- Systemriskessignmentto local dsk
- Festprobabilistieintegrationmethods
- Rellability-baesddesig_optimization
- CertiFcationtochnique

° Developadaptive tochniquesforocresning
unimportantfactors inlarge complexsystems

o Convertmost effoctivemethods istocommercially-
available andsupportedtools

• Developmethodsandmodels for converting mfg processdata into design info
• Improvemodels for life and reliabilityprediction

Standards & practides

• Begindevelopmentof Probabliisticdesignaod Reliabilitystandards,
practicesand codes,via professionalsocieties,standardsorganizations
(AIAA, SDM,ASTM,stc) and perhapsNASA/DOD

Engineer/Student education

• Improvethe designcurdculu_ with mornemphasison the designprocess,
Pmbabilisticdesign,toleraocing,anddesign formanufacturability

Figure 29

Legal liabilify
• Profsocieties,stds orgs,

iodustn/,.., workwith
Congress& legislatures

to modify tort law

•--AT4TALe'/'AI¢472_ ,

The value of information

, \
/ '\

/ Knowledge

, \
/ Behavior/ \

/ / RelationshipsData

T
Probabilistic

Analysis

Copyright David G. Ullman, Design & Decision Supporl
L-'8'_MFfRq_ 3o

Figure 30
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Ultimately,ProbabilisticMethodsare Aids to
Decisionmakingby Management

. Goesdirectly to the Challengeof Modelingthe World that We see
around Us

• Facilitatesthe HistoricalTransition from Inferentialto Deductive
Assessments

• Modelstransform raw Data into Knowledge to enable Decisions

• TechnicalMethodsare being infusedToday into Managementand
other inherentlySubjective fields

• Managers arecrying out for reliable DecisionAids

• Rate of Transition & Successful Use of ProbabilisticMethodswill be

determinedby Developersof the methods

Figure 31
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Summary of NDA Activities of Professional Societies

Dr. Suren N. Singhal

QSS Group Inc.
NASA Glenn Research Center

Cleveland, OH 44149
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SUMMARY OF NDA ACTIVITIES OF PROFESSIONAL SOCIETIES

This presentation summarizes activities of some professional societies in the area of

non-deterministic approaches (NDA). Major NDA activities of SAE (Society of Mobility

Engineering) and AIAA (American Institute of Aeronautics & Astronautics) are discussed.

There are on-going NDA activities in other societies such as ASME (American Society of

Mechanical Engineering) and ASCE (American Society of Civil Engineering), which are not

covered in this presentation. The presentation demonstrates that engineers can achieve full

potential as contributors in professional engineering organizations.

The SAE G-11 Probabilistic Methods Committee provides a good source of

information wrt various technological, applications, communications, education, training,

and related issues for any one to make use of them.

Summary of NDA Activities
of Professional Societies

by Suren Singhal on behalf of all G-11 Members

Presented at The Training Workshop on

Nondeterministic Approaches and Their Potential

for Future Aerospace Systems

NASA Langley, May 31, 2001

INTERNATIONAL

The Engineering Society for Advancing Mobility

LAND - SEA - AIR - SPACE

[Reach for the Full Potential t

Figure 1
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OUTLINE

Non-deterministicapproachesareintroducedin thecontextthat led to the initiation of

the SAE & AIAA activities about a decade ago. The SAE, AIAA, and other non-profit NDA

activities are then discussed. Conclusions & recommendations for the engineering

community are presented.

• Introduction

Outline

• SAE Activities

• AIAA Activities

• Other Professional Activities

• Conclusions & Recommendations

Figure 2
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INTRODUCTION

The critical issue in todays fast moving engineering world is delineated along with a

proven solution. The accompanying challenges are highlighted. The solution requires a

systems perspective to fully address the issues of today's engineering community. All this is

linked with the role of professional societies in addressing such issues, solutions, and

challenges for the benefit of all.

Introduction

•Issue, Proven Solution, Challenges

"Examples

•Systems Perspectives

•Role of Professional Societies

I Professional Societies Serving the Community Needs

Figure 3
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ISSUE AND PROVEN SOLUTION

Many countries are at the leading edge of technology while the U.S. national budget

for cultivating the frontier technologies keeps getting tighter, demanding more-than-ever

efficient return on investment. New innovative ways must be adopted if they lead to real and

measurable cost reduction and efficiency improvements. Perceptions alone will not suffice.

Some form of NDA/probabilistic engineering has been proven to result in significant real and

measured savings. The time is ripe for prudent implementation of such technologies for the
benefit of all.

Issue

Global competition and the state of U.S. national budget

mandate the need for new innovative ways of increasing
efficiency with real and measurable cost reduction.

Proven Solution

Some form of probabilistic engineering is currently being

used by some U.S. corporations, resulting in billions of

dollars of real and measured savings.

A sample use of probabilistic engineering by U.S. Air Force

has demonstrated savings of millions of dollars.

THE TIME IS RIGHT FOR

PROBABILISTIC ENGINEERING

Figure 4
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CHALLENGES

Like any new innovation, there are multiple challenges that must be addressed heads-

on, rather than ignoring them, so as to enable successful applications of probabilistic

engineering. With the phenomenal success of engineering innovations designed by

deterministic approach, it is not an easy task to convince experts to adapt to non-

deterministic approaches. And then there must be documented proofs that such approaches

do offer competitive advantage. Further, there is a need for adequate training, the requisite

tools, and certification guidelines. And then there are cultural and legal barriers, which are

being addressed by the SAE activities. The bottom line is such a paradigm shift is easier said

than adopted.

Challenges

• Today's Safety Factor Approach

• Show me the proof

• Training, tools, certification

• Barriers, legal issues

Paradigm shift is easier said than adopted

Figure 5
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EXAMPLES OF PROBABILISTIC ENGINEERING

WITH DEMONSTRATED COST SAVINGS

The examples of probabilistic engineering with demonstrated savings include those

by major organizations such as by Northrop Grumman for fighter wing, Lockheed Martin for

bird strike, P&W for aircraft cooling, Boeing (previously Rockwell) for Space Shuttle

Docking Module, and applications of Six Sigma at Motorola, Allied Signal, and GE. The

probabilistic engineering leads to realistic savings, generally with an order of magnitude cost

to benefit payoff.

EXAMPLES OF PROBABILISTIC ENGINEERING

WITH DEMONSTRATED COST SAVINGS

• Fighter wing --- REDUCED WEIGHT BY 15% (Northrop-

Grumman)

• Bird strike on aircraft engine ---SAVED LIVES (Lockheed-Martin)

• Aircraft cooling duct fabrication --- SAVED $500K (P&W)

• Space Shuttle docking module --- REDUCED TESTING COST

FROM $500K TO $50K (Boeing-Rockwell)

• PE-based Design for Six Sigma --- MOTOROLA SAVED $11B

and GE ON THE WAY TO SAVE $8B

Probabilistic engineering is for real with proven

order of magnitude savings. Expect > 1 to 10 cost

to benefit payoff!!

backup

Figure 6
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SYSTEMS PERSPECTIVE

The uncertainties are naturally present in every aspect of engineering life cycle from

defining mission-reliable requirements which must lead to an innovative concept to risk-

averse design resulting in a competitive product that a customer will value for performance

over cost and use the product safely with economical maintenance and final retirement with

overall greater than one return on investment. This is the overall systems perspective that

weaves uncertainties m each step of any system's life cycle that would result in profitable
ventures

Systems Perspective
Requirements

Mission-Reliable

_ Concepts

Innovative

ROI

[Retirement]

Multi-Disciplinary
Analysis, Design &

Manufacturing

Risk Averse

Product

/_ Competitiveg;
Maintenance _ Operation _S_ Customer 1

Economical Safe Cost vs. Performance

Uncertainties are inherent in every step

backup

Figure 7
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ROLE OF PROFESSIONAL SOCIETIES

The professional societies can and must act as a catalyst in bring together new ideas,

technologies, and people. The professional societies can play a pivotal role in bringing to

limelight worthwhile futuristic innovations faster than they otherwise would. These societies

must help engineering community make aware of such new technologies, help enhance their

understanding of convincing intricacies, and be a clearinghouse of much-needed training,

tools, and experts. The professional societies can accelerate implementation of futuristic

technologies, starting from small pilot projects conducted in a cooperative multi-

organizational environment.

Role of Professional Societies

• Awareness

• Understanding

• Resources

*Tools

*Training

*Experts

• Implementation

Professional societies can be the catalyst in bringing

people & new ideas together

Figure 8
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SAE G-11 ACTIVITIES

The SAE G-11 Division activities will be discussed in three parts: (1) the Reliability,

Maintainability, Supportability, and Logistics (RMSL) Division, (2) the Probabilistic

Methods (PM) Committee, and (3) the Probabilistic Methods Leadership Council (PMLC).

The website for details on these activities is provided below.

SAE G-11 Activities

'RMSL Division

'Probabilistic Methods (PM) Committee

•PM Leadership Council

SAE G-11 Web site:

http://forums.sae.org/access/dispatch.cgiffEAG 11PM_pf

Figure 9
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WHY ARE WE HERE?

The SAE G-11 RMSL Division gathers together semiannually to serve the needs of

the land, sea, air, and space engineering community. By understanding the needs and

working on need-based projects, the SAE members deliver information, standards, education,

and training.

RMSL

Division
Why Are We Here?

Information, Standards,

Education, Training

%
70,000 SAE Members

Needs

Land, Sea, Air, Space

Community

I
Serving the Engineering Community

Figure 10
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WHY ARE WE HERE?

This chart summarizes the benefits of attending the G-11 meetings including: (1)

face-to-face interaction with peers, (2) an opportunity to measure how an individual

organization stack up against the state-of-the-art, (3) the best engineering practices, (4)

technology exchange, (5) networking, (6) list of needed information and resources such as

meetings, seminars, etc., and (7) a venue for partnering with others. The G-11 Division

hopes to always provide benefits outweighing the expense of attending the meeting.

RMSL

Division
Why Are We Here?

•Industry, govt., academia face-to-face

•How does your organization compare?

•What are the best practices?

•Technology interchange and networking

•Access to information and resources

•Partnership with some of the best in the business

embe: /
Realize

Benefit

/

J Employer ofSupport _"
Attendance G-11 Member

Figure 11
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HOW DO WE WORK?

This chart depicts the real workings of the G-11 Division. We try to understand the

generic needs of organizations at large. We develop projects based on these needs and

deliver the results to the customer. Of course, the individuals and organizations attending the

meeting tend to benefit more as their needs are brought out in the open discussions at our
semiannual meetings.

RMSL

Division
How do We Work?

7

•Division meets twice a year

•Committee/Project Leaders conduct telecons

Delivering to the Engineering Community

Figure 12
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ORGANIZATION

This chart shows the width and depth in terms of the projects and people involved in

our organization, which remains dynamic and flexible, based on changing needs of the

engineering community that it serves.

RMSL OR(
tslon

PROBABILISTIC
METHODS

SUREN SINGHAL

QSS (at NASA Glenn)

ERIC FOX

VICE CHAIRMAN

GEORGE DESIDERIO
U.S. Dept of Defense

Office of Secretary of Defense

OPERATIONS

NED CRISCIMAGNA

lit Research Institute

Maryland Technology Ctr

Veros

I I
SOFTWARE RMSL SUPPORTABILITY

DAVE PEERCY TOM NONDORF
Sandia Boeing Company

McDonnell Aircraft &
National Laboratories Missile Sys.

JOE WHEATCROFT

U.K. Ministry of
Defence

Royal Air Force

KEITH COCKSEY
UK Ministry of Defence

Royal Air Force

RELIABILITY

DON MEENA
Lockheed Martin

Aeronautics-Palmdal e

! CARL CARLSON

I General Motors Corp.

i Mid-size Car Division

;ANIZATION
G-11

CHAIRMAN

SURENSINGHAL

QSS(atNASAGlenn)

I
RMSL STANDARDS

LIAISON

RUSSELL VACANTE

U.S. Department of Army
Army Mgmt Staff College

I
SECRETARY

ANDREW PICKARD

Rolls-Royce

Allison

DENNIS HOFFMAN

Lockheed Martin

Aeronautics

EXECUTIVE

COMMI'ITEE

JERRELL STRACENER
Southern Methodist

University i
School of Enainaerina

DAVE ETTERS i

Ford Motor Co, ii

T
MAINTAINABILITY/

SERVICEABILITY

WILL GREGORY
General Electric Co.

GE Aircraft Engines

BILL CARLSON

DaimlerChrysler Corp.
Technical Center

I
LOGISTICS

GERARD IBARRA

United Parcel Service

RUSSELL VACANTE

U.S, Department of Army
Army Mgmt Staff College

RMSL SYSTEMS

APPROACH

TILAK SHARMA

Boeing Company

Commercial Airplane Grp

LOREN LONG

General Electric Co.

GE Aircraft Engines

[
EDUCATION

& TRAINING

JIM WASILOFF
Ford Motor Co.

Autor_atic Transmission Engrg

JOE MARCIANO

United Technologies Corp
Sikorsky Aircraft Division

RESOURCES

RAMON SOMOZA

EADS-CASA

Military Aircraft Unlt

Dynamic Organization Based on Members & Projects
backup

Figure 13
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WHAT HAVE WE DONE SO FAR?

The G-11 Division has published documents with recommendations, guidelines, and

standards. It has conducted workshops as needed by the community. The Division meetings

have led to significant industry, government, and academia interaction. The Division is

dedicated to making a difference.

RMSL

Division

What Have We Done So Far?

•Published resource documents, information reports,

standards and guidelines on RMSL & PM

•Conducted Workshops

•Facilitated significant industry, government and academia
interaction

I The G-11 Members Keep Making a Difference

Figure 14
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PRELIMINARY LIST OF PUBLICATIONS ISSUED

(AVAILABLE FROM SAE - 724-776-4841)

A sample list of G-11 publications is attached here.

RMSL Division Preliminary List of Publications Issued (Available from SAE - 724-776-4841)

Title Publ.

1 "Evaluation Criteria for Reliability Centered Maintenance (RCM) 8/99
Processes"

2 "Software Support Concept" 6/99

3 "Reliability Program Standard Implementation Guide" 3/99

4 "Perceptions and Limitations Inhibiting the Application of 12/98
Probabilistic Methods"

5 "Software Reliability Program Standard" 7/98

6 "Software Supportability Program Implementation Guide" 7/98

7 "Reliability Program Standard" 6/98

8 Probabilistie methods, A Joint Industry/Government/Academia 10/97
Assessment of Needs and Goals"

9 "Software Supportability - An Overview" 1/97

10 "Integration of Probabilistic Methods into the Design Process" 1/97

11 "Reliability and Safety Process Integration" 7/96

12 '+Solid Rocket Booster Reliability Guidebook-Vol. 11 Probabilistie 6/96
Design & Analysis Methods for Solid Rocket Boosters"

13 "Liquid Rocket Engine Reliability Certification" 4/96

14 Recommended RMS Terms and Parameters" 12/95

15 "RMS Information Sourcebook" 11/93

16 "The FMECA Process in the Concurrent Engineering (CE) 6/93
Environment"

17 "Solid Rocket Booster Reliability Guidebook" 2/91

18 "Survey Results: Computerization of Reliability, Maintainability 1/90
& Supportability (RM&S) in Design"

Product Code Sponsor

JAIO11_199908 TEAG11SL (Chair: D. Netherton)

JA1006 199906 TEAGll (Chair: D. Peercy)

JA1000/1-199903 TEAG11R (Chair: D. Elters)

AIR5086 TEAG11PM (Chair: C. Pomfret)

JA1002_199807 TEAG11SW (Chair: D. Peercy)

JA1004_199807 TEAG11SW (Chair: D. Peercy)

JA1000-199806 TEAG11R (Chair: D. Elters)

ARD050047 TEAG11PM (Chair: S. Singhal)

AIR5121 TEAGllSW

AIRS080 TEAGllPM (Chair: E. Fox)

A1R5022 TEAGI 1

AIR5006/2 TEAG 11

ARP4900 TEAG11

AIR4896 TEAG11R

ARD50046 TEAG11

AIR4845 TEAG11

ARD50013 TEAG11

AIR4276 TEAG 11

backup
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PRELIMINARY LIST OF PUBLICATIONS IN PROGRESS

(DRAFTS MAY BE AVAILABLE FROM CHAIRPERSON)

A sample of list of publications in progress is attached here.

RMSL Division

Preliminary List of Publications in Progress (Drafts May Be Available From Chairperson)

Title

1 "Maintainability Program Standard

2 "Basic Concepts, Models and Approximate Methods for

Probabilistic Engineering Analysis"

3 "Applications of Probabilistic Methods"

4 "Legal Issues Associated with the Use of Probabilistic Design
Methods"

5 "Reliability Testing Standard"

6 "Failure Modes, Effects, and Criticality Analysis Procedures"

7 "Supporrtability Process Standard"

8 "Guide to the Reliability Centered Maintenance (RCM) Standard

9 "Software Supportability Program Implementation Guide"

I0 "Software Reliability - An Overview"

11 "Software Reliability Program Standard"

12 "Software Reliability hnplementation Guide"

13 "Software Supportability Program Standard"

14 "Software Supportabifity Implementation Guide"

15 "Software Support Concept"

Publ. Product Code Sponsor

JA1010 TEAGllM (Chair: W. Gregory)

AIR5083 TEAG11PM (Chair: D. Ghiocel)

AIRI09 TEAGllPM (Chair: T. Torng)

TEAGllPM (Chair: A. Pickard)AIR5113

JA1009 TEAGllR (Chair: W. Grimes)

J2336 TEAGllS (Chair: H. Hetriek)

J2336 TEAG11S (Chair: H. Hetrick)

JA1012 TEAGI1SL (Chair: D. Netherton)

JA1005

J2443

J2444

J2445

J2446

J2447

J2448

TEAGIlSW (Chair: D. Peerey)

TEAGllSW (Chair: D. Peercy)

TEAGllSW ( Chair: D. Peercy)

TEAGllSW ( Chair: D. Peercy)

TEAGllSW ( Chair: D. Peercy)

TEAGllSW ( Chair: D. Peercy)

TEAGllSW ( Chair: D. Peercy)

backup
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WHERE ARE WE HEADED?

The Division will continue focusing on relevant RMSL and PM needs, taking

advantage of web-based communication.

RMSL Division
Where Are We Headed?

•RMSL should remain the focus unless otherwise

so indicated by our customers.

•Need to revitalize and reinvigorate all G- 11 activities

and participants based on customer needs.

•Transition to an electronically-linked network to rapidly

respond to individual and organizational needs, but

continue face-to-face semi-annual meetings.

•Elevate G-11 to Systems Engineering Council

l Just do what's relevant & will be useful

backup
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RE_TALIZATION OF G-11

This chart outlines the Division vision and goals with focus on meeting customer
needs. Our members invest hundreds and thousands of volunteer hours. We want to make

sure we work only on what is relevant, needed, and will be useful to our customers such as

you, the reader.

RMSL Division Revitalization of G-11

Vision: Be the authoritative source of RMSL information,

education, and standards that the national and

international leaders turn to!

Goals: (1) Re-establish projects based on customer

need only. (Initial buy-in, continuous

interest, of direct use and benefit.)

(2) Link projects to participants with overlap in

their day job.

(3) Communicate with senior management on

what we do in conjunction with what will
attract their attention.

backup
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REVITALIZATION OF G-11 (CONTINUED)

Our goals include establishing appropriate liaisons with national and international

engineering community.

RMSL Division

Revitalization of G-11 (Continued)

Goals: (4)

(5)

(6)

(7)

(8)

Establish liaisons with relevant groups.

(NATO, U.K., Ministry of Defense, ISO,

IEEE, NAE, ....... )

Broadcast relevant standards already

developed by G- 11.

Meet at locations most likely to attract

participants.

Need to listen to and hold hands of new

participants.

Integrate RMSL workshops with RAMS

backup
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G-11 PROBABILISTIC METHODS COMMITTEE (PMC)- VISION

Now let's talk about the G-11 Division's PM Committee. The vision was set ten

years ago and we continue brainstorming, implementing, and delivering the requisite results

for the benefit of the engineering community at large, with special attention to the

organizations to the attending members.

G-11 Probabilistic Methods Committee (PMC)

Vision

To serve as the premier Probabilistic Methods group

with balanced, broad representation in industry,

government, and academia that carries with it

authoritative insight and the ability to envision,

initiate, and implement a holistic agenda for

probabilistic methods that benefits all people.

Brainstorm, initiate & implement probabilistic projects

for the benefit of all, especially member organizations

Figure 20
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G-11 PROBABILISTIC METHODS COMMITTEE (PMC) - PEOPLE

This chart shows the people of the PMC organization involved in technology

development, technology applications, communications, issues such as legal ones, and new
initiatives.

G-11 PMC People

S. Singhal - Chairman (QSS)
E. Fox - Vice Chairman 03-eros); M. Khaleszi - Vice Chairman for External Relations (U_ipas_)

I

I A. Pickard-Secretary (Rolls-Royce Allison) II
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G-11 PROBABILISTIC METHODS COMMITTEE (PMC) -PRODUCTS

The PMC products include documents, education, training, workshops,

recommendations, guidelines, and standards.

G-11 PMC Products

•Technology Development & Applications - Compile Information

•Documents (AIR/ARD)

•Education & Training

•Recommendations to industry, government, and academia

,Standards

G-11 produces information, documents, education,

training, recommendations, and standards
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G -11 DIVISION PROJECT INFORMATION - MIAMI, FLORIDA

This page shows the information we collect for each project on the last day of each of

our semi-annual meetings.

G-11 PMC

NAME OF PROJECT

G -11 DIVISION

PROJECT INFORMATION

UPDATED AT MARCH 26-28_ 2001 MEETING
MIAMI, FLORIDA

LIST OF PARTICIPANTS:

(please include e-mail address)

This list will be published on the web page for this

project. It will also serve as a special access list for
the Team's Private Area located in SAE's Private
Forum. This will be where draft documents reside

for this project and allow easier communication
among team partidpants.

NOTE: INDICATE PRIMARY (P) OR

SECONDARY (S)

AIR/ARD NUMBER AND TITLE:

SCOPE/PURPOSE/END RESULT: Scope:

End Result:

Please return this form to Suren Singhal or Eric Fox before leaving Meeting backup
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G -11 DIVISION PROJECT INFORMATION - RENO, NEVADA

We further show the amount of critical information that we collect for each project.

Relevance to industry is a MUST.

G-11 PMC

G -11 DIVISION

PRO,I[ECT INFORMATION

UPDATED AT OCTOBER 23-26_ 2000 MEETING

RENO_ NEVADA

TABLE OF CONTENTS:

(If a draft is available, it will be placed on the

web page for the project.)

RELEVANCE TO 1NDUSTRY/GOV T:

(who is going to benefit)

PROJECTED COMPLETION DATE:

Please return this form to Suren Singhal or Eric Fox before leaving Meeting backup
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G -11 DIVISION PROJECT INFORMATION - RENO, NEVADA

We conclude each project meeting with future plans for the next 6 months. Our

members continue working on these projects along with their day jobs. Monthly telecons

with Project, Subcommittee, Committee, and Division chairs ensure flow of information,

continuity of work, and high motivation among active members.

G-11 PMC
G-11 DIVISION

PROJECT INFORMATION

UPDATED AT OCTOBER 23-26_ 2000 MEETING
RENO_ NEVADA

MEETING ACCOMPLISHMENTS:

FUTURE PLANS:

(Action Items/Including Dates)

Please return this form to Suren Singhal or Eric Fox before leaving Meeting

backup
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MISSION STATEMENTS FOR OUR PM COMMITTEE WEBSITE

The mission of some of our PM technology project is described on this chart.

G-11 PMC
Subcommittee:

Mission:

1. Project:

Mission:

2. Project:

Mission:

3. Project:

Mission:

4. Project:

Mission:

5. Project:

Mission:

MISSION STATEMENTS FOR OUR PM COMMITTEE WEBSITE

Technology

To develop and disseminate technical information about probabilistic

Methods which can be used easily by industry, government, and academia.

Integration of probabilistic Methods in Design

To develop an approach which will integrate probabilistic methodologies

with design practices, procedures, and software codes currently being used.

Computational Probabilistic Methods

To create a state-of the-art, nationally recognized resource document

on Probabilistic methods for use by industries for advanced

engineering applications and probabilistic designs.

Applications of Probabilistic Methods

To capture previous experience and lessons learned in the application of

probabilistic methods, and to provide examples and points-of-contact

for initiating new applications.

Probabilistic methods Case Studies

To provide guidelines by which probabilistic methods should be used in

different types of problems.

Integration of probabilistic methods in Manufacturing

To identify and describe the engineering challenges, requirements, and

methods employed in manufacturing and quality control. backup
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TECHNICAL SUBCOMMITTEES AND PROJECTS - COMMUNICATIONS

The mission of some of our communications projects is described on this chart.

G- 11 PMC TechnicalSubcommitteesandProjects
COMMUNICATIONS

Mission

To identify the industry need and means of rapid communication and transfer of the probabilistic technology to the industry and
facilitate the adaptation of the requisite technology by the industry.

Projects

1. Needs/Goals

To identify industry, government, and academia needs and goals and to ensure SAE G-11 PM Committee addresses these needs

and goals. To promote PM usage in industry and government through (a) increased awareness by providing pre-eminent

source of information on all aspects of PM, and (b) induced synergism by establishing communications between

urganizations/parties interested in PM.

2. Workshop

To develop and present a workshop demonstrating practical applications of PM.

3. Newsletter

To eommumeate G-11 and other national/international PM activities via a semi-annual newsletter.

4. Membership

To expand participation of scientists, engineers, and managers in G-11 PM activities.

5. Publications

To make people aware of PM technology and its potential benefits by publishing articles in engineering and non-engineering
magazines.

6. Awards

To recognize significant industry, government, academia PM contributions exemplifying time and cost savings, support.

training, and dedication.

7. Website

To create and update a website location to inform the public of G-11 PM technology and its potential benefits via an electronic
environment.

8. G-11 Liaison backup
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TECHNICAL SUBCOMMITTEES AND PROJECTS - COMMUNICATIONS

The mission of some of our issues projects is described on this chart.

G-11 PMC

Subcommittee:

Mission:

1. Project:

Mission:

2. Project:

Mission:

3. Project:

Mission:

Subcommittee:

Mission:

Issues

To address the controversies, reluctances, litigation aspects and

standards associated with the introduction of PM into design,

manufacturing, certification, operation, maintenance, and retirement.

Barriers to probabilistic Methods

To address the barriers which impede the acceptance of PM in the

design, manufacturing, and user communities and examine the benefits

and fimitations of PM so that their use can be properly understood and

practiced.

Probabilistic Methods Legal Issues

To address the barriers which impede the acceptance of PM in the
design, manufacturing, and user communities and examine the benefits

and limitations of PM so that their use can be properly understood and

practiced.

Probabilistic Methods Legal Issues

To examine the legal aspects of utilizing PM, most notably the

quantification of risk/safety and the attendant ramifications.

New Initiatives

To initiate new projects with significant potential impact on use and
communication of PM technology.

backup
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ACCOMPLISHMENTS

This chart is not to beat the drums but as a tribute to the hard and dedicated work of

our members that have led to accomplishments that they can be proud of.

G-11 PMC Accomplishments
• In 1992, we began with 6 members with a goal of 50 in 5 years.

Nine years later today, we stand at > 100 (including non-

attending ones)!

• In 1993, we began with 5 generalized long term goals.

Eight years later today, we stand at 20 (15 active) projects!

•In 1994, we began working on 1 SAE document.

Seven years later today, we have published 3, are about to

publish 3 more, and are pursuing 4 more.

• In 1995, we began with the idea of PM Leadership Council.

Six years later today, we have > 30 Council members!

• In 1996, we began with an idea of a PM newsletter.

Five years later today, we have published 9 issues!

backup

Figure 29

351



ACCOMPLISHMENTS

Our members must continue working with the same vigor for at least a decade more,

as they have in the last decade.

PMc Accomplishments

•In 1997, we introduced 4 PM achievement awards.

Four years later today, we are preparing for the 5 th award

ceremony!

•In 1997, PMLC recommended we conduct PM Workshops.

We presented PM Workshops in 1997 & 1998!

•In 1999 and 2000, we focused on & demonstrated stable growth

in the PM attendees & enhanced our linkage with industries.

•In 2001, we are beginning with more bold ideas!!

We are influencing our organizations' competitiveness!

With your dedication, anything is possibleI!

backup
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STATUS OF DOCUMENTS

A status of some of our current documents is delineated here.

G-11PMC Status of Documents

Category Title %Corn plete

Technology

Probabilistic Engineering 99%

.............Method s, Volume I
Probabilistic Engineering 75%

Methods, Volume II

Numerical Review 75%

Application Cases

Applications AinNorthieness

Manufacturing

Issues

.................................................i F:ij!g_!"_e_!__£_!/B_i_9,!.!.£_i_!iii.iii..ii,iiiiii..5_/?i_.........._..out!.ne b...ylo/0!.._

Estimated SAE Report # .
Completion Date

10/1 AIR 5083

ls(dra_" by""i'[)/()l ..........Not_Ye{ Assigned :

1st draft by 10/01 AIR 5110

Input Distd6uiion "S;reciion ...........................5_)o.............................O'u{]]'ne'i_) ":1"6/()"i.................Not °Y°e;("As°s]'gneci......

" 15roba6iJ]s'{ic'F_eii&bJiit_/.........................2o6/o..................]"S{ dra_b_) :16)0:1 N0i vet _,ss_igned

80% Final by 10/01 AIR 5109
(Vo!ume_).

70% 1st draft by 10/01 Not Yet Assigned

40% In Progress ......................Not Ye{ Assigned
3/03

Legal issues 99% Approved AIR 5113

Guidelines Discussion Phase AIR 5115

..................................................................!0/#.2........
Minimum Competency 40% 10/1 Not Yet Assigned

Diagnostics Just Beginning Not Yet Assigned
: 10/03

Not Yet As.s.!gned
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FUTURE PLANS

The future of the SAE G-11 PMC is to continue the path it embarked upon about ten

years ago, i.e., keep working until PM becomes a routine practice.

G-11 PMC Future Plans

G-11 PMC as an internationally recognized premier source for:

opM Information

opM Experts

°PM Applications

°PM Training

Keep working until PM becomes a routine practice!
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PROBABILISTIC METHODS LEADERSHIP COUNCIL

This chart describes the charter and focus of the PMLC, an organization that took

birth about 5 years ago to serve as the senior advisory council to the SAE G-11 PMC and to

encourage the implementation of PM in the industry. The Council is comprised of senior

executives from industry, government, and academia.

Probabilistic Methods Leadership Council

• Charter - High-Level Advisory Group

• Members - Senior Executives

• Current Focus - Risk Assessment & Probabilistic Design
Practice

• On-Going Projects - Recommend minimum PM competency

to engineering accreditation board

Leadership Council has made a difference in

accomplishing the G-11 PMC vision.
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AIAA ACTIVITIES

This chart lists the two AIAA activities. The PM subcommittee of the Structures TC

that started about ten years ago is now focused on service life design and reliability

assessment. About three years ago, the Non-deterministic Approach (NDA) Forum was

established to serve the growing need of the engineering community.

AIAA Activities

•Technical Subcommittee on Service Life

Design & Reliability Assessment & the
NDA Forum

•Working Technical Group -

Nondeterministic Approaches (NDA)

AIAA Structures TC web site:

http://jafar.ncsa.uiuc.edu/aiaa/organizationffechSub/reliability.html
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TECHNICAL SUBCOMMITTEE ON SERVICE LIFE DESIGN

& RELIABILITY ASSESSMENT

This chart outlines the AIAA activities in the area of PM and NDA, mostly focused

on panel discussions and paper presentations, unlike the SAE G-11 activities, which are three

days of, focused interaction on PM with your peers.

AIAA
Technical Subcommittee on Service Life Design

& Reliability Assessment

• Initiated as Probabilistic Methods (PM)

Subcommittee of the Structures TC in 1993

•Initiated & successfully implemented focused

sessions on PM papers at the annual SDM

Conference

•Initiated & have organized a panel discussion at

the annual SDM Conference.

•Approved by AIAA as NDA Forum

The aerospace professional engineering community

has pulled together to make AIAA activities a success
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WORKING TECHNICAL GROUP - NONDETERMINISTIC APPROACHES (NDA)

This chart describes the NDA working technical group.

AIAA
Working Technical Group -

Nondeterministic Approaches (NDA)

•An electronic committee dedicated to furthering

the implementation of nondererministic

approaches in the engineering community

•Conducted a joint industry/government/academia

workshop for nation-wide recommendations on

the use of nondeterminisfic approaches.

A dedicated group of members continue to encourage

the use of nondeterministic approach

Figure 36

358



OTHER NON-PROFIT PROFESSIONAL ACTIVITIES

This chart gives the address of a nonprofit website with a focus on nontraditional

approaches. The web site will be open soon. NDA and PM will be a major part of this web
site.

Other Non-Profit Professional Activities

A web-based professional community &

resource for non-traditional approaches:

WWW.NTACENTER.COM

•Web site under construction

•First segment with focus on PM & NDA

accessible in August, 2001

A central one-step web-based resource for non-

traditional approaches for America tomorrow!
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CONCLUSIONS

In conclusion, there is evidence out there that the probabilistic approaches will

provide an order-of-magnitude savings, which can be measured. The SAE G-11 PMC

provides a forum to bring the people and technology together. There are publications dealing

with PM technology, applications, and communications issues that may be useful for any

organization engaged in understanding and implementing probabilistic approach.

Conclusions

•Payoff from interdisciplinary probabilistic engineering will be

orders of magnitude of investment.

•SAE G-11 PMC provides a forum:

- to learn from each other

- to compile & disseminate relevant information

SAE is fulfilling the current PM need
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RECOMMENDATIONS

On behalf of the SAE G-11 PM Committee, recommendations to adopt the PM

technology are to first sensitize our engineers to start thinking probabilistically, followed by
education and access to relevant tools. We must first realize the PM benefits on a small

project, before going full scale and realizing the full PM potential.

Recommendations

•Sensitize & Educate yourself

•Find the fight tools

•Start with applying PM to the fight prototype

•Realize full potential of PM

IPM- A ROUTINE PRACTICE! I

Figure 39
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YOUR ACTION PACK

For those interested in joining or just learning more about the SAE G-11 PM

activities, you may propose a project of your interest for our consideration or submit a PM

application for publication in our resource documents. The bottom line is - MANAGE
UNCERTAINTIES OR RISK BEING MANAGED BY THE UNCERTAINTIES - THE

CHOICE IS YOURS !!

Your Action Pack

(1) Get involved in G-11 - Announcement for the next

G-11 PMC meeting

(2) Propose your project - New Project executive

Summary Form

(3) Submit a PM application for publication - PM

Application Summary Sheet

(4) Inform your colleagues - Suggestion for potential
new members

Manage Uncertainties OR

Risk Being Managed by Them!
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ACTION (1) GET INVOLVED IN G-11
ANNOUNCEMENT FOR THE NEXT G-11 PMC MEETING

This chart includes a brief description of projects to be discussed at the next G-11

meeting.

Action (1) Get Involved in G-11

Announcement for the next G-11 PMC Meeting

The Fall 2001 Meeting of the SAE G-11 Prohahilistie Methods Committee will be held in Monterey, California during October 1-3, 2001,

Tile fltree-day meeting will be focused on technical discussions among your peers from industry, _ovenmlent_ and academia.

_1]le topics to be discussed include:

(i) Probabilisfic Engineering Methods - What are the various probabilistic methods, how are they alike and/or different, where are they applicable, and

how can you use them in real-life?

Relevance to Industry & Government- Details and references on various probabilistic methods and recommendations on which methods can be used

for what real-life problem.

(2) Numerical Review- Several typical engineering problems are being solved using different pmbabilistic simulation codes. The discussion includes:

what problems, what results by different methods, and how can industry use which code for what pmblon_

Relevance to Industry & Government - Case studies of typical problems encountering tmcertaindes, results of solutions to these problems run by

different codes, and reconmaendations on which code is applicable where.

(3) Input Distribulion Selection - What distribution to select when there is tittle or no data?

Relevance to Industry & Government - Too often, we get bogged down thinking we need a lot of data before we can quantif3_ macertainties. Not True.

There are ways to do credible probabilistic analysis with little data

(4) Application Cases - We are compi/ing the applications of prohabilistic analysis demonstrating time & cost savings by various organizations.

Relevance to Industry & Government - Too often, we say, "Show Me the Proof of the Podding". With help from many contributors, we hope to

produce such a document. Problem is - not too many people are coming forward due to proprietary nature So, we are asking m document only

miairaum information including problem description, what method used. did it result in any savings, and how much?

(5) Airworthiness - How to use probabilistic methods for airworthiness - a project proposed by a PMLC Member.

Relevance to Industry & Government- Airwo_ainess is a key issue for the aerospace community, There are uncertainties associated with it. By

learning how to assess the effects of these anceVainties, we hope to be able to help industry produce airworthy vehicles which are more efficient and

COSt effective at the same time.
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ACTION (1) GET INVOLVED IN G-11

ANNOUNCEMENT FOR THE NEXT G-11 PMC MEETING

This chart continues the brief discussion of the projects to be discussed at the next G-

11 PM meeting.

(6)

(7)

(8)

(10)

(11)

(12)

Manufacturing - This project started with plans for integrating probabllistic methods in the manal_actufing process but is enrrenfly focused on

dimensional tolerancthg during the manufacturing process.

Relevance to Industry & Govermnent- Tolerancing during the manufacturing process is a key issue that governs warranty, cost, failure rate. etc.

With tiffs project, we hope to provide guidance on tolerenchtg.

Legal Issues - We are looking at legal precedence and what issues may arise when you use probabilistic methods.

Relevance to Industry & Government- There is the widespread belief that when things are designed using deterministic approach, they are designed

correctly. And that if you use probabillsfic approach, you designed it to fail (one in so many (hues). Sure, it invites public scrutiny. The fact is. it is the

probabilistic approach that accounts for real-fife uncertainties allowing us to design correctly,

A paper was published in an AIAA Conference with an eye-opening conclusion- if an organization does not use probabilistic methods, tools for which

are now available_ then that organization could be find negligent for not using such tools.

Standards - What standards need to be set by whom, when, etc.?

Relevance to Induslry & Government- Much discussion is taking place in consultation with FAA. industry, and others on how to go by start setting

a pilot standard for certification by probabilistic methods, eventually leading to full standards for analysis, design, manufacturing, testing, certifications.

nlainNanc_, operations, and retirement.

Competency - What is the uthtimum competency in probabRishc methods that our engineers should have before graduating from college? This project

was proposed by SAE PMLC.

Rdevanee to Industry & Government - We have initiated contact with ABET and are bralnstormin_ as to what should our engineering colleges

teach, both on the undergraduate and the graduate level so that our industry end government don't have to spend a lot of money training engineers in

how to quantify uncertainties.

Diagnaslies - How to incorporate prohabilistic methods into diagnostics?

Relevance to Industry & Government- Knowing how to account for uncertainties in diagnostics, can lead to significant cost savings and can result

in reducing failures

Probabilistie Reliabilily- How to compute reliability by quantifying uncertainties?

Relevance to Industry & Government - Correct reliability computations both at the component end system level are needed so one can design an item

based on its expected usage and life span.

Flight Test Cast Reduction- How can one reduce the high cost and thne of _ght testing? We will look at the whole picture including analysis,

ground testing, and in-flight testing? This project was inspired by the Boeing President for Phautom Works, Mr. Swain.

Relevance to Industry & Government- cost savings and faster time to market!!

There are other ongoing operational projects, ff you can make a good case. we will consider a new project that can help our industry and government.

For further infonnatiun, contact:

Meeting Details: Kerry Tielsch (ktielsch@sae.org)

Technical: Suren Singhal (ssinghal @ grc.nasa.gov)
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ACTION (2) - PROPOSE YOUR PROJECT

NEW PROJECT EXECUTIVE SUMMARY FORM

This chart is the new project executive summary form. You are welcome to complete

one for the project of your interest and submit it to SAE.

Title:

Action (2) - Propose your project
New Project Executive Summary Form

Submission Date: Revision:

Project Leader: Alternate:
(Address)

(Phone/Fax)

(E-mail)

Background:

Objective(s):

Scope:

Benefit to Industry/
Government/Academia:

Relation to Other AIR's:

Target Dates: Outline -
First Draft -

Expected Completion Date -

When completed, please submit to your committee chairperson.
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ACTION (3) - SUBMIT A PM APPLICATION FOR PUBLICATION

PROBABILISTIC METHODS APPLICATION SUMMARY SHEET

You may use this form to submit an application of probabilistic methods for

publication in an SAE document

Action (3) - Submit a PM application for publication

Probabilistic Methods Application Summary Sheet

1. Application No: (Do not answer this question)

2. Type of Industry:

3. Project Title:

4. Reason for Using Probabilistic Approach:

5. Probabilistic Method Used:

6. Rationale for Selection of the Type of Probabilistic Analysis Used for This Application:

7. Probabilistic Analysis Results Summary and Benefits:

8. Describe Whether or Not the Results Were Verified (Analytically, or by Test):

9. Potential Application of This Analysis to Other Industries:

10. Cost Versus Benefits Analysis:

11. Referenced Technical Report or Paper:

Please submit to Suren Singhal at:
ssinghal@qssgess.com

Figure 44
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ACTION (4) - INFORM YOUR COLLEAGUES
SUGGESTIONS FOR POTENTIAL NEW MEMBERS - PLEASE PRINT

This page is for sharing with those interested in joining the SAE G-11 PM

Committee. Hopefully, you may benefit from the work of professional engineering societies.

Together, we can make a difference.

Action (4) - Inform your colleagues

Suggestions for Potential New Members -Please Print

Name: Last: First:

Company:

Email:

PhmJe Number:

Fax#:

Address:

Name: Last First:

Company:

Email:

Phol_e Number:

Fax#:

Address:

Name: La_: F'trst:

Company:

Email:

Phone Number:

Fax#:

Address:

SUBMYIq_D BY:.
Phone_:

Emall:

Figure 45
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Probabilistic Approaches for Evaluating Space Shuttle Risks

William Vesely

Space Shuttle PRA Coordinator
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Probabilistic Approaches for

Evaluating Space Shuttle Risks

Bill Vesely

Space Shuttle PRA Coordinator

May 31, 2001

Figure 1

Objectives of the Space Shuttle PRA

• Evaluate Mission Risks

• Evaluate Uncertainties and Sensitivities

• Prioritize Contributors

• Evaluate Upgrades

• Track Risks

• Provide Decision Tools

Figure 2
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Space Shuttle PRA Significance

• Largest Space Shuttle PRA Effort to Date

• Direct Participation of the NASA Centers

• Recognized by the Space Shuttle Program

• Model Integration Across JSC, MSFC, KSC

• NASA Headquarters Support and Oversight

• NASA Computer Code and Models

Figure 3

Space Shuttle PRA Participants

• JSC, MSFC, and KSC

• NASA Headquarters

• Prime Contractors-USA, Boeing, Rocketdyne,

Morton-Thiokol, Pratt-Whitney, Lockheed-Martin

• Support Contractors- SAIC, HEI

• Supporting Consultants

Figure 4
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Space Shuttle Elements

• Space Shuttle Main Engines (SSMEs)

• Solid Rocket Boosters (SRBs)

• External Tank (ET)

• Redesigned Solid Rocket Motors (RSRMs)

• Advanced High Pressure Pumps (ATHPPs)

• Orbiter

Figure 5

Types of Losses

• Loss of Crew and Vehicle

• Processing Incurred Losses

• Mission Aborts

• Mission Partial Failures

• Economic Losses

Figure 6
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Risk Contributors

• Hardware Failures

• Fries and Explosions

• Human Performance

• Processing Effectiveness

• Cracks and Leaks

• Aging Degradations

Figure 7

Program Approach

• Develop Risk Framework

• Identify Risk Elements to be Included

• Establish System Engineering Interfaces

• Develop Risk Models

• Assemble Data

• Quantify Risks and Uncertainties

• Support Applications

Figure 8
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Input ]QRAS ESDs

Devilo p

Catastrophic ]Models
Develop Master

Logic Diagram of

Initiating Events

Develop Mission ,I
Event Tree and

Sub Trees l

_:pa_Faiblu 2 _ _ Run SAPHIRE

Obtain Risk Results ]
I

Including Mission IRisks and Risk Contributions

Space Shuttle PRA Flow Diagram

Develop [Dependency Matrix

Functional Fault Tree

Models

Figure 9

Function Definitions for a Space Shuttle Mission for the PRA

ASCENT Mission Event Tree (7 Top Events):

TOP#1 TOp#2 Top#3 Top#4 TOp//5 Top#6
Top//7

Tqo EventNames: MECH.S_PT-ASC FC-ASC STRUCT-INTG-ASC .CRW.ENV _ _ ORB-

INSR_
ModelingApproach: T FT FT FT ET ET ET

ModelingStatus: (developed) (todevelop) (to develop) (todevelop) (developed) (developed)
(developed)

TopEventNames:

ModelingApproach:

ModelingStatus:

ORBIT Mission Event Tree (5 Top Events):

Top#I Top#2 Top#3 Top#4 TOp#5

MECH-SUPPT-ORB F-C2.0_]__ STRUCT-1NTG-ORB
CRW-TSK

ET FT F'r FT
I_ffeveloped) (todevelop) (todevelop) (to develop) (todevelop)

TopEventNames:

ModelingApproach:

ModelingStatus:

ENTRY/LANDING Mission Event Tree (5 Top Events):

Top#1 Top#2 Top#3 Top#4 Top#5

MECH -SUPPT-ENT FC-ENT STRUCT-INTG-ENT CRW-ENV

ET FT ]l_ FT ET
(developed) (to develop) (todevelop) (todevelop) (todevelop)

Figure 10
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Q

Figure 11

Top Levels of a Master Logic Diagram (MLD) For a Space Shuttle PRA

I

Top Levels in the Logic Diagram for Hazards to be Evaluated

Figure 12
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Secondary Levels of Fire Hazards to be Evaluated

Io_,_,_I

4_o_p I

4L°x"_s_l_

Figure 13

Probabilistic Approaches

• Reliability Models

• Phenomenological Models

• Dependency Modeling

• Probability Networks

• Bayesian Probability and Statistics

• Sensitivity Studies and Designs

• Decision Theory Applications

Figure 14

377



_NX.aK

--E

FUNCTIO N_ET_ORB IT - Top-lord F_c Ev_t Tree for Orbit (higllest I_vel) 2000tl 0/30 Pager

Event Tree for Sequencing Function Requirements in a Space Shuttle Mission

Figure 15

I .... I........I
Pog, s

l _ .....I ...........I ......_......

_, ioo_ I

I ,,_ ...... _ Fault Tree Input to the Mission Event Tree
L)

Figure 16
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I

I(;_¢IION

OK

Linking Fault Trees into the Mission Event Tr

LOCV DUE_

_U_OWNFAIL

LCCV DUETO

r/_L_r FAL

[GNN-F_

_e

Figure 17

Event Sequence Diagram for Phenomenological Modeling
(1 ] Es[lmated valu_ from Marshall / JSC / F*I 6 data. Mayo

d_emnt or _ for orbitedSRB APU.

(2} Somewhat 8ubjectlvo * Whirs Sands to help

(3) EsUma*e from MarshalVJSC data

(4) Based on ge,omet q// elemBnt / phase of flight May he different

for ascent / ertt_y

(5) Conditional _robabi[_y, somewhat subjemive. White Sands to

help. Based on elemvnt I phase of flight. Conserva_ve lo cover

pa_dal losses?

Figure 18
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lmcorrected

Defects

caused

Defects

reoccur

Propagation

for

consequences

Probability Network for Modeling Process Contributions

Figure 19
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Figure 21

Modeling Objectives

• Consistency Across Diverse Elements
• Modularized Risk Models

• Prioritization of Hardware, Humans, and
Processes

• Thorough Treatment of Uncertainties and
Sensitivities

• Defensible Results and Conclusions

• Effective Presentations

Figure 22
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Program Status

• Modeling Guidelines Issued

• Risk Framework Model Developed

• Risk Elements Defined

• First Stage Models Being Completed

• Computer Models Being Constructed

• Initial Results End of FY01

• Final Results End of FY02

• Future Extensions Being Planned

Figure 23
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